A Fluctuación de dióxido de carbono en cuatro diferentes sistemas de producción pecuaria y una zona urbana de Paraguay medidos con tecnología “smart IoT”
DOI:
https://doi.org/10.5016/1984-5529.2023.v51.1433Palabras clave:
contaminantes, dispositivos electrónicos, ganadería, gasesResumen
El Dióxido de Carbono (CO2) se constituye en uno de los gases más importantes considerados contaminantes. Por ello, es prioritaria la generación de información que contribuya en la caracterización de la huella medioambiental generada en área urbana y en sistemas de producción animal representativos. Así, el objetivo fue comparar a altura hombre la fluctuación del nivel de CO2 existente, en una zona urbana/capitalina y en cuatro modelos típicos paraguayos de producción animal: bovina de leche intensivo y semi-intensivo, pollos parrilleros (engorde intensivo) y cría/recría/engorde de porcinos (intensivo), de manera global y estratificada en franjas horarias. Para ello, se utilizó la tecnología “IoT” (Internet of Things), desde un equipo Smart Environment Libelilum®, que obtenía lecturas del CO2 y variables meteorológicas, transmitiéndolos en tiempo real a una plataforma digital. De manera global, el mayor promedio de partes por millón (ppm) de CO2 se observó en el sistema de pollos parrilleros (512,77 ppm), seguido de la zona urbana (372,94 ppm) y en última posición, se situó el galpón de producción bovina semi-intensivo (296,36 ppm), detectándose diferencias significativas entre los grupos (p<0,05). Mismo comportamiento se constató en las franjas horarias; excepto en algunos intervalos (de 00:00 a 06:00 y de 18:00 a 00:00 horas; p>0,05). La concentración de CO2 en el aire medida en el ambiente de sistemas de producción de leche bovina, de cerdos y de pollos parrilleros mostró valores en general bajos, que en la mayoría de los casos incluso compararon favorablemente con aquella medida al aire libre en el ambiente urbano.
Citas
Alberton BAV, Nichols TE, Gamba HR, Winkler AM (2020) Multiple testing correction over contrasts for brain imaging. NeuroImage 216:1-14. doi: 10.1016/j.neuroimage.2020.116760
Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58(3):626-639. doi: http://dx.doi.org/10.1139/f01-004
Anderson MJ, Millar RB (2004) Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecology 305(2):191-221. doi: 10.1016/j.jembe.2003.12.011
Arroyo FR (2018) The circular economy as a sustainable development factor of the productive sector. Innova Research Journal 3(12):78-98. doi: 10.33890/innova.v3.n12.2018.786
Attwood P, Brouwer R, Ruigewaard P, Versloot P, de Wit R, Heederik D, Boleij JS (1987) A study of the relationship between airborne contaminants and environmental factors in Dutch swine confinement buildings. American Industrial Hygiene Association Journal 48(8):745-751. doi: 10.1080/15298668791385507
Banhazi TM, Stott P, Rutley DL, Blanes-Vidal V, Pitchford WS (2011) Air exchanges and indoor carbon dioxide concentration in Australian pig buildings: effect of housing and management factors. Biosystems Engineering 110(3):272-279. doi: 10.1016/j.biosystemseng.2011.08.007
Brannigan PG, McQuitty JB (1972) Concentration-temperature relationships of atmospheric gaseous contaminants. Canadian Agricultural Engineering 14(1):37-41.
Dimov D, Marinov I, Penev T, Miteva C, Gergovska Z (2019) Animal hygienic assessment of air carbon dioxide concentration in semi-open freestall barns for dairy cows. Bulgarian Journal of Agricultural Science 25(2):354-362.
Donham KJ, Popendorf WJ (1985) Ambient levels of selected gases inside swine confinement buildings. American Industrial Hygiene Association Journal 46(11):658-661. doi: 10.1080/15298668591395490
D’Urso PR, Arcidiacono C (2021) Effect of the Milking Frequency on the Concentrations of Ammonia and Greenhouse Gases within an Open Dairy Barn in Hot Climate Conditions. Sustainability 13(16):1-12. doi: 10.3390/su13169235
Feddes JJR, Leonard JJ, Mcquitty JB (1984) Carbon dioxide concentration as a measure of air exchange in animal housing. Canadian Agricultural Engineering 26(1):53-56.
Fernandez MD, Losada E, Ortega JA, Arango T, Ginzo-Villamayor MJ, Besteiro R, Lamosa S, Barrasa M, Rodriguez M (2020) Energy, production and environmental characteristics of a conventional weaned piglet farm in north west spain. Agronomy 10(6):1-13. doi: 10.3390/agronomy10060902
Friedlingstein P, Jones MW, O'Sullivan M, Andrew RM, Bakker DCE, Hauck J, Le Quéré C, Peters GP, Peters W, Pongratz J, Sitch S, Canadell JG, Ciais P, Jackson RB, Alin SR, Anthoni P, Bates NR, Becker M, Bellouin N, Bopp L, Chau TTT, Chevallier F, Chini LP, Cronin M, Currie KI, Decharme B, Djeutchouang LM, Dou X, Evans W, Feely RA, Feng L, Gasser T, Gilfillan D, Gkritzalis T, Grassi G, Gregor L, Gruber N, Gürses Ö, Harris I, Houghton RA, Hurtt GC, Iida Y, Ilyina T, Luijkx IT, Jain A, Jones SD, Kato E, Kennedy D, Klein Goldewijk K, Knauer J, Korsbakken JI, Körtzinger A, Landschützer P, Lauvset SK, Lefèvre N, Lienert S, Liu J, Marland G, McGuire PC, Melton JR, Munro DR, Nabel JE, Nakaoka S-I, Niwa Y, Ono T, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Rosan TM, Schwinger J, Schwingshackl C, Séférian R, Sutton AJ, Sweeney C, Tanhua T, Tans PP, Tian H, Tilbrook B, Tubiello F, van der Werf GR, Vuichard N, Wada C, Wanninkhof R, Watson AJ, Willis D, Wiltshire AJ, Yuan W, Yue C, Yue X, Zaehle S, Zeng J (2022) Global Carbon Budget 2021. Earth System Science Data 14(4):1917-2005. doi: 10.5194/essd-14-1917-2022
Jones WG, Morring K, Olenchock S, Williams T, Hickey J (1984) Environmental study of poultry confinement buildings. American Industrial Hygiene Association Journal 45(11):760-766. doi: 10.1080/15298668491400575
Kaasik A, Maasikmets M (2013) Concentrations of airborne particulate matter, ammonia and carbon dioxide in large scale uninsulated loose housing cowsheds in Estonia. Biosystems Engineering 114(3):223-231 doi: 10.1016/j.biosystemseng.2013.01.002
Kocaman B, Esenbuga N, Yildiz A, Laçin E, Macit M (2006) Effect of environmental conditions in poultry houses on the performance of laying hens. International Journal of Poultry Science 5(1):26-30. doi: 10.3923/ijps.2006.26.30
Lin J, Mitchell L, Crosman E, Mendoza D, Buchert M, Bares R, Fasoli B, Bowling D, Pataki D, Catharine D, Strong C, Gurney K, Patarasuk R, Baasandorj M, Jacques A, Hoch S, Horel J, Ehleringer J (2018) CO2 and carbon emissions from cities: linkages to air quality, socioeconomic activity and stakeholders in the Salt Lake City urban area. Bulletin of the American Meteorological Society 99 (11):2325-2339. doi:10.1175/BAMS-D-17-0037.1
Maghirang RG, Manbeck HB, Roush WB, Muir FV (1991) Air contaminant distributions in a commercial laying house. Transactions of the ASAE 34(5):2171-2180. doi: 10.13031/2013.31855
Martínez-López OR (2017) Métodos estadísticos aplicados en Zootecnia. Etigraf, Asunción. 292p.
Martínez-López OR, Rodríguez-Acosta MI (2021) Estudio de las fluctuaciones de Metano (CH4) y Dióxido de Carbono (CO2), en dos galpones de producción bovina para leche de Paraguay (intensivo y semi-intensivo), utilizando tecnología “IoT”. Revista Científica De La Facultad De Ciencias Veterinarias De La Universidad Del Zulia 31(3):99-106.
Mihina Š, Sauter M, Palkovičová Z, Karandušovská I, Brouček J (2012) Concentration of harmful gases in poultry and pig houses. Animal Science Papers and Reports 30(4):395-406.
Ni J‐Q, Heber AH, Lim TT, Tao PC, Schmidt AM (2008) Methane and carbon dioxide emission from two swine finishing barns. Journal of Environmental Quality 37(6):2001‐2011. doi: 10.2134/jeq2007.0386
Pérez R, Narvajas S, Terry E (2019) IoT en ALC 2019: Tomando el pulso al Internet de las Cosas en América Latina y el Caribe. Banco Interamericano de Desarrollo (BID). doi: 10.18235/0001968
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Reece FN, Lott BD (1980) Effect of carbon dioxide on broiler chicken performance. Poultry Science 59(11):2400-2402. doi: 10.3382/ps.0592400
Salinas YD, Galván DG, Guzmán I, Orrante JA (2022) El impacto del internet de todas las cosas (IoT) en la vida cotidiana. Ciencia Latina Revista Científica Multidisciplinar 6(2):1369-1378. doi: 10.37811/clrcm.v6i2.1959
Siegel S, Castellan NJ (1995) Medidas de Asociación no paramétricas. En: Estadística no paramétrica aplicada a las ciencias de la conducta, 4.a ed., Trillas. pág.272-282.
Stull RB (1988) An Introduction to Boundary Layer Meteorology. Springer Dordrech. 670p.
Taylor R (1990) Interpretation of the correlation coefficient: a basic review. The Journal of Diagnostic Medical Sonography 6(1):35-39. doi: 10.1177/875647939000600106
UNFCCC - United Nations Framework Convention on Climate Change (2015) The Paris Agreement. Framework Convention on Climate Change. United Nations. Available at: <https://unfccc.int/resource/bigpicture/index.html#content-the-paris-agreemen> (Access on: Mar. 28, 2020).
Vermeer HM, Hopster H (2018) Operationalizing Principle-Based Standards for Animal Welfare-Indicators for Climate Problems in Pig Houses. Animals (Basel) 8(4):2-15. doi: 10.3390/ani8040044
Vtoryi V, Vtoryi S, Lantsova E, Gordeev V (2016) Effect of water conditions on content of carbon dioxide in barns. In: 15th International Scientific Conference Engineering for Rural Development. p.437-441. Available at: <https://agris.fao.org/agris-search/search.do?recordID=LV2016030680> (Access on: Mar. 10, 2022).
Zhang WE, Sheng Q, Mahmood A, Tran DH, Zaib M, Hamad S, Aljubairy A, Alhazmi A, Sagar S, Ma C (2020) The 10 Research Topics in the Internet of Things. In: IEEE 6th International Conference on Collaboration and Internet Computing. p.34-43. doi: 10.1109/CIC50333.2020.00015
Zou B, Shi Z, Du S (2020) Gases emissions estimation and analysis by using carbon dioxide balance method in natural-ventilated dairy cow barns. International Journal of Agricultural and Biological Engineering 13(2):41-47. doi:10.25165/j.ijabe.20201302.4802
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Roberto Martínez López, Pedro Manuel Errecart , Liz Mariela Centurión
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os autores permanecem com os direitos autorais de tudo que publicarem na Científica. Opiniões e conceitos contidos no artigo e a fidedignidade e exatidão das informações e das referências nele apresentadas são de exclusiva responsabilidade dos autores. A reprodução parcial ou total dos trabalhos é permitida desde que seja explicitada a fonte de referência.