16S rRNA molecular analysis, phosphorus solubilization, and influence on the growth of soybean (Glycine max) and maize (Zea mays) by bacteria isolated from the soil

Authors

  • Jackson Antônio Marcondes de SOUZA São Paulo State University (Unesp)
  • Wallynson Eduardo Silva ALMEIDA São Paulo State University (Unesp)

DOI:

https://doi.org/10.5016/1984-5529.2024.v52.1393

Keywords:

Phosphorus-solubilizing bacteria (PSB), Plant growth-promoting rhizobacteria (PGPR), Bacillus spp., pH acidification.

Abstract

Microorganisms play an active role in Phosphorus (P) transformations in the soil, influencing its availability to plants and its flux in nature. The transformations result from the decomposition and mineralization of organic compounds, immobilization in microbiomes, and solubilization of inorganic minerals. The basis of this study was to evaluate 10 bacterial isolates, aiming to characterize them as: growth pattern in TY medium (Tryptone Yeast); growth pattern on NBRIP medium (National Botanical Research Institute's Phosphate); solubilization of calcium hydroxide phosphate (Ca5(OH)(PO4)3); pH variation in different media; partial sequencing of the 16S rRNA gene, and influence of growth, in a greenhouse, for soybean (Glycine max) and maize (Zea mays) crops. Among the ten isolates, the best P solubilizers were LGA05-V0513, LGA06-V0517 (Bacillus cereus), and LGA14-V20J (Arthrobacter echigonensis), while the worst one was the isolate LGA08-V20C (Acinetobacter sp.). The main isolates that benefited the development of soybean and maize plants belong to the genus Bacillus.

References

Abdulmalik AF, Yakasai HM, Usman S, Muhammad JB, Jagaba AH, Ibrahim S, ... Shukor MY (2023). Characterization and invitro toxicity assay of bio-reduced hexavalent chromium by Acinetobacter sp. isolated from tannery effluent. Case Studies in Chemical and Environmental Engineering 8: 100459.

https://doi.org/10.1016/j.cscee.2023.100459

Agustiyani DWI, Dewi TK, Laili NUR, Nditasari A, Antonius S (2021). Exploring biofertilizer potential of plant growth-promoting rhizobacteria candidates from different plant ecosystems. Biodiversitas Journal of Biological Diversity, 22(5).

https://doi.org/10.13057/biodiv/d220529

Alisjahbana B, Debora J, Susandi E, Darmawan G (2021). Chromobacterium violaceum: a review of an unexpected scourge. International Journal of General Medicine 14: 3259-3270. https://doi.org/10.2147/IJGM.S272193

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. Journal of molecular biology 215(3): 403-410.

https://doi.org/10.1016/S0022-2836(05)80360-2

Alves HDO, Miranda MD, Polanczyk RA, Nascimento JD, Desiderio JA, Souza JAM (2020). Integral Characterization of the 16S rRNA Gene of Non-sporulating Bacteria and Its Action Against Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae). Journal of Agricultural Science 12(12): 61-74.

https://doi.org/10.5539/jas.v12n12p61

Amarasinghe T, Madhusha C, Munaweera I, Kottegoda N (2022). Review on mechanisms of phosphate solubilization in rock phosphate fertilizer. Communications in Soil Science and Plant Analysis 53(8): 944-960.

https://doi.org/10.1080/00103624.2022.2034849

Amarasinghe T, Madhusha C, Munaweera I, Kottegoda N (2022). Review on mechanisms of phosphate solubilization in rock phosphate fertilizer. Communications in Soil Science and Plant Analysis 53(8): 944-960.

https://doi.org/10.1080/00103624.2022.2034849

Ameyu T, Asfaw E (2020). Effect of lime and P fertilizer on soybean [Glycine max L. (Merrill)] grain yield and yield components at Mettu in South Western Ethiopia. International Journal of Environmental Monitoring and Analysis, 8(5): 144-154.

https://doi.org/10.11648/j.ijema.20200805.13

Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011). Bacillus thuringiensis: a story of a successful bioinsecticide. Insect biochemistry and molecular biology 41(7): 423-431.

https://doi.org/10.1016/j.ibmb.2011.02.006

Campolino ML, dos Santos TT, de Paula Lana UG, Gomes EA, Guilhen JHS, Pastina MM, ... de Sousa SM (2023). Crop type determines the relation between root system architecture and microbial diversity indices in different phosphate fertilization conditions. Field Crops Research 295: 108893.

https://doi.org/10.1016/j.fcr.2023.108893

Chen X, Liu P, Zhao B, Zhang J, Ren B, Li Z, Wang Z (2022). Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L) and their dependency on P placement depth. Field Crops Research 276: 108378.

https://doi.org/10.1016/j.fcr.2021.108378

Ehling-Schulz M, Lereclus D, Koehler TM (2019). The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiology spectrum 7(3): 10-1128.

https://doi.org/10.1128/microbiolspec.GPP3-0032-2018

Etesami H, Adl SM (2020). Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome in stress regulation: 147-203. https://doi.org/10.1007/978-981-15-2576-6_9

Gupta M, Kumar H, Kaur S (2021). Vegetative insecticidal protein (Vip): A potential contender from Bacillus thuringiensis for efficient management of various detrimental agricultural pests. Frontiers in microbiology 12: 659736.

https://doi.org/10.3389/fmicb.2021.659736

Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series 41(41): 95-98.

Hegyi A, Nguyen TBK, Posta K (2021). Metagenomic analysis of bacterial communities in agricultural soils from Vietnam with special attention to phosphate solubilizing bacteria. Microorganisms 9(9): 1796. https://doi.org/10.3390/microorganisms9091796

Inui R, Takeshi L, Picchi S, Barbosa J, Lemos M, Marcondes J, Macedo EGL (2012). P solubilizing and IAA production activities in plant growth promoting rhizobacteria from brazilian soils under sugarcane cultivation. Journal of Engineering and Applied Sciences 7: 1446-1454.

Kour D, Kaur T, Yadav N, Rastegari AA, Singh B, Kumar V, Yadav AN (2020). Phytases from microbes in P acquisition for plant growth promotion and soil health. In: Rastegari AA, Yadav NA, Yadav N (eds) New and future developments in microbial biotechnology and bioengineering, Elsevier. p. 157-176. https://doi.org/10.1016/B978-0-12-820526-6.00011-7

Kumar S, Stecher G, Tamura K (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33(7): 1870-1874. https://doi.org/10.1093/molbev/msw054

Loke WK, Saud HM (2021). Effect of Chromobacterium violaceum on plant growth-promoting rhizobacteria (PGPR) under in-vitro conditions. Malaysian Journal of Soil Science 25: 59-65.

Lucero CT, Lorda GS, Ludueña LM, Anzuay MS, Taurian T (2020). Motility and biofilm production involved in the interaction of phosphate solubilizing endophytic strains with peanut, maize and soybean plants. Rhizosphere 15: 100228.

https://doi.org/10.1016/j.rhisph.2020.100228

Malavolta E, Vitti GC, Oliveira SD (1989). Avaliação do estado nutricional das plantas; princípios e aplicações. Associação Brasileira para Pesquisa da Potassa e do Fosfato. Potafos/Piracicaba. 201p.

Mandal NC (2021). Phosphate solubilization by plant growth promoting rhizobacteria and improvement of their potentials through biofilm formation. Journal of Mycopathology Research 58 (4): 211-220.

Mažylytė R, Kaziūnienė J, Orola L, Valkovska V, Lastauskienė E, Gegeckas A (2022). Phosphate solubilizing microorganism Bacillus sp. MVY-004 and its significance for biomineral fertilizers' development in agrobiotechnology. Biology 11(2): 254.

https://doi.org/10.3390/biology11020254

Mendes WD, Sobrinho CAM, Martins WS, Muraishi CT, de Souza MP, Adams GS, ... de Carvalho LC (2022). Efeito de bactérias solubilizadoras de fósforo na cultura da soja no Brasil: revisão de literatura. Research, Society and Development 11(16): e65111637828-e65111637828. https://doi.org/10.33448/rsd-v11i16.37828

Miranda MD, Alves HDO, Polanczyk RA, do Nascimento J, de Souza JAM (2023). Taxonomy of non-sporulating bacteria tested in biological control against Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera: Noctuidae). Journal of Agricultural Science 15(3): 42-57. https://doi.org/10.5539/jas.v15n3p42

Nosheen S, Ajmal I, Song Y (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 13(4): 1868.

https://doi.org/10.3390/su13041868

Omori WP, Camargo AFD, Goular KCS, Lemos EGDM, Souza, JAM (2016). Influence of vinasse application in the structure and composition of the bacterial community of the soil under sugarcane cultivation. International Journal of Microbiology: ID2349514.

https://doi.org/10.1155/2016/2349514

Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology 70: 5607-5612.

https://doi.org/10.1099/ijsem.0.004332

Patel D, Goswami D (2020). P solubilization and mobilization: mechanisms, current developments, and future challenge. In Yadav AN, Rastegari AA, Yadav N, Chatterjee D (eds) Advances in Plant Microbiome and Sustainable Agriculture: Functional Annotation and Future Challenges, Springer Link, p.1-20.

https://doi.org/10.1007/978-981-15-3204-7_1

Rawat P, Das S, Shankhdhar D, Shankhdhar SC (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition 21(1): 49-68.

https://doi.org/10.1007/s42729-020-00342-7

Rehman FU, Kalsoom M, Adnan M, Toor M, Zulfiqar A (2020). Plant growth promoting rhizobacteria and their mechanisms involved in agricultural crop production: A review. SunText Rev. Biotechnol 1(2): 1-6.

Sanchez-Gonzalez ME, Mora-Herrera ME, Wong-Villarreal A, De La Portilla-López N, Sanchez-Paz L, Lugo J, ... Yañez-Ocampo G (2022). Effect of pH and carbon source on phosphate solubilization by bacterial strains in Pikovskaya medium. Microorganisms, 11(1): 49. https://doi.org/10.3390/microorganisms11010049

Sebastian AM, Umesh M, Priyanka K, Preethi K (2021). Isolation of plant growth-promoting Bacillus cereus from soil and its use as a microbial inoculant. Arabian Journal for Science and Engineering 46(1): 151-161.

https://doi.org/10.1007/s13369-020-04895-8

Shalhevet J. Huck MG, Schroeder BP (1995). Root and shoot growth responses to salinity in maize and soybean. Agronomy Journal 87(3): 512-516.

https://doi.org/10.2134/agronj1995.00021962008700030019x

Silva Filho GN, Vidor C (2000) Solubilização de fosfato por microrganismos na presença de fontes de carbono. Revista Brasileira de Ciência do Solo 24: 311-319.

https://doi.org/10.1590/S0100-06832000000200008

Skerman VBD, McGowan V, Sneath PHA. (1980). Approved lists of bacterial names. International Journal of Systematic Bacteriology, 30: 225-420.

https://doi.org/10.1099/00207713-30-1-225

Song C, Wang Q, Zhang X, Sarpong CK, Wang W, Yong T, ... Yang W (2020). Crop productivity and nutrients recovery in maize-soybean additive relay intercropping systems under subtropical regions in Southwest China. International Journal of Plant Production 14: 373-387. https://doi.org/10.1007/s42106-020-00090-9

Song C, Wang W, Gan Y, Wang L, Chang X, Wang Y, Yang W (2022). Growth promotion ability of phosphate‐solubilizing bacteria from the soybean rhizosphere under maize-soybean intercropping systems. Journal of the Science of Food and Agriculture 102(4): 1430-1442. https://doi.org/10.1002/jsfa.11477

Statista (2024). Statista - The Statistics Portal for Market Data, Market ... Available in: https://www.statista.com/statistics/1287852/global-consumption-fertilizer-by-country/ (Access in 28 Mar 2024).

Sun W, Shahrajabian MH, Soleymani A (2024). The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. Plants 13(5): 613. https://doi.org/10.3390/plants13050613

Tuipulotu DE, Mathur A, Ngo C, Man SM (2021). Bacillus cereus: epidemiology, virulence factors, and host-pathogen interactions. Trends in Microbiology 29(5): 458-471. https://doi.org/10.1016/j.tim.2020.09.003

USDA (2024). U. S. Department of Agriculture. Available in: <https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=BR> (Access in 28 Mar 2024).

Vashishth A, Tehri N, Tehri P, Sharma A, Sharma AK, Kumar V (2023). Unraveling the potential of bacterial phytases for sustainable management of phosphorous. Biotechnology and Applied Biochemistry 70(5): 1690-1706. https://doi.org/10.1002/bab.2466

Walsh M, Schenk G, Schmidt S (2023). Realising the circular P economy delivers for sustainable development goals. npj Sustainable Agriculture 1(1): 2. https://doi.org/10.1038/s44264-023-00002-0

Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology 173(2): 697-703.

https://doi.org/10.1128/jb.173.2.697-703.1991

Xia L, Li X, Fan W, Wang J (2020). Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresource technology 301: 122749. https://doi.org/10.1016/j.biortech.2020.122749

Yin CF, Xu Y, Zhou NY (2020). Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. International Biodeterioration & Biodegradation 155: 105089.

https://doi.org/10.1016/j.ibiod.2020.105089

Zhou S, Guo X, Wang H, Kong D, Wang Y, Zhu J, ... Ruan Z (2016). Chromobacterium rhizoryzae sp. nov., isolated from rice roots. International journal of systematic and evolutionary microbiology 66(10): 3890-3896. https://doi.org/10.1099/ijsem.0.001284

Zhou Y, Chen X, Zhang Y, Wang W, Xu J (2012). Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. International journal of systematic and evolutionary microbiology 62(4): 764-769. https://doi.org/10.1099/ijs.0.030361-0

Downloads

Published

28/12/2024

How to Cite

SOUZA, J. A. M. de; ALMEIDA, W. E. S. 16S rRNA molecular analysis, phosphorus solubilization, and influence on the growth of soybean (Glycine max) and maize (Zea mays) by bacteria isolated from the soil. Científica, Dracena, SP, v. 52, 2024. DOI: 10.5016/1984-5529.2024.v52.1393. Disponível em: http://cientifica.org.br/index.php/cientifica/article/view/1393. Acesso em: 5 apr. 2025.