Comparative cytogenetics in nine cultivars of passion fruit (Passiflora edulis Sims)

Authors

  • Jonathan Andre Morales MARROQUÍN Santa Cruz State University
  • Margarete Magalhães SOUZA Santa Cruz State University
  • Gonçalo Santos SILVA Santa Cruz State University
  • Cláusio Antônio Ferreira MELO Santa Cruz State University
  • Viviane de Oliveira SOUZA Santa Cruz State University
  • Rita de Cássia Vital SANTOS-SANCHÊS Santa Cruz State University

DOI:

https://doi.org/10.5016/1984-5529.2023.v51.1372

Keywords:

Karyotype, FISH, chromosomal heteromorphism, Passifloraceae, Intraspecific variation

Abstract

Nine commercial cultivars of Passsiflora edulis were analyzed for karyotypes.Karyotype analyzes in accessions and cultivars of the genus Passiflora have helped to understand the interespecific variability both for the genetic improvement and for the production by hybridization to obtain promising plants within the genus. The aim of this study was to understand the intraespecific karyotype variability and its diversification through classic and molecular cytogenetic techniques. Conventional staining with 4% Giemsa was used for conventional karyotype analysis and fluorescent in situ hybridization (FISH) was used to locate 45S and 5S rDNA sites. All cultivars were diploid, with chromosome number 2n = 18. Significant difference (P<0.001) was observed between the mean values of chromosome length between cultivars. The chromosomal mapping with FISH demonstrated a pair with rDNA 5S sites and two pairs of rDNA 45S in long arms of the chromosomes. The rDNA 5S site was observed on chromosomes 5 in all cultivars, while the rDNA 45S sites were observed in two chromosomal pairs that varied their positions in different cultivars (6L and 8L, 7L and 9L, 7L and 8L). Heteromorphism was observed in the length of the 45S site in some cultivars as well as in the length of the long arm and in some chromosomal satellites. The data presented in this article can help to understand the variation of the intraspecific karyotype in P. edulis, in view of the varied breeding processes that these species have undergone throughout the domestication process, being observed variation between cultivars. rDNA 5S and 45S clusters proved to be excellent markers cytogenetics to understand the process of variation, and consequently evolution, intraspecific in Passiflora.

Author Biography

Margarete Magalhães SOUZA, Santa Cruz State University

Biologist, Master's and Doctorate in Plant Improvement, Area of Cytogenetics and Genetic Improvement, State University of Santa Cruz, Department of Biological Sciences, Area of Genetics.

References

Amorim JS, Souza MM, Viana AJC, Corrêa RX, Araújo IS, Ahnert D (2014) Cytogenetic, molecular and morphological characterization of Passiflora capsularis L. and Passiflora rubra L. Plant, Systematics and Evolution 300:1147-1162. https://doi.org/10.1007/s00606-013-0952-1

Bhargava A, Fuentes FF (2009) Mutational dynamics of microsatellites. Molecular Biotechnology 44:250-266. https://doi.org/10.1007/s12033-009-9230-4

Bernacci LC, Vitta FA, Bakker YV (2003) Passifloraceae. In: Wanderley MGL, Shepperd GJ, Melhem TS, Giulietti AM, Kirizawa M (eds) Flora fanerogâmica do Estado de São Paulo (v3), RiMa/FAPESP. p.247- 274.

Janaki Ammal EK (1945) Chromosome atlas ofcultivated plants. In: Darlington CD, Janaki Ammal EK (eds) George Allen and Unwin Ltd. p.114.

Coelho MSE, Bortoleti KC, Araujo FP, Melo NF (2016) Cytogenetic characterization of the Passiflora edulis Sims x Passiflora cincinnata Mast. interspecific hybrids and its parents. Euphytica 210:93-104. https://doi.org/10.1007/s10681-016-1704-4

Cuco S, Vieira MLC, Mondin M, Aguiar-Perecin MLR (2005) Comparative karyotype analysis of three Passiflora L. species and cytogenetic characterization of somatic hybrids. Caryologia 58:220-228. https://doi.org/10.1080/00087114.2005.10589454

Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477-485. https://doi.org/10.1534/genetics.107.071399

EMBRAPA (2008). Maracujá azedo BRS Gigante Amarelo (BRS GA1). Disponível em: <https://www.embrapa.br/busca-de-solucoes-tecnologicas/-/produto-servico/1035/maracuja-azedo-brs-gigante-amarelo-brs-ga1 > (Acesso em 20 de mar de 2022).

EMBRAPA (2012). Maracujá azedo BRS Rubi do Cerrado (BRS RC). Disponível em: <https://www.embrapa.br/busca-de-solucoes-tecnologicas/-/produto-servico/1040/maracuja-azedo-brs-rubi-do-cerrado-brs-rc> (Acesso em 20 de mar de 2022).

Ferreira, DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35:1039-1042. https://doi.org/10.1590/S1413-70542011000600001

Guerra M (1986) Reviewing the chromosome nomeclature of Levan et al. Brazilian Journal of Genetics 9:741-743.

Guerra M, Sousa MJ (2002) Como observar cromossomos: um guia de técnica em citogenética vegetal, animal e humana. Funpec. 131p.

Hansen AK, Gilbert LE, Simpson BB, Downie SR, Cervi AC, Jansen RK (2006) Phylogenetic relationships and chromosome number evolution in Passiflora. Systematic Botany 31:138-150. https://doi.org/10.1600/036364406775971769

Huziwara Y (1962) Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosome of Aster. American Journal of Botany 49:116-119. https://doi.org/10.1002/j.1537-2197.1962.tb14916.x

IBGE (2020) Produção Brasileira de Maracujá em 2020. Disponível em: http://www.cnpmf.embrapa.br/Base_de_Dados/index_pdf/dados/brasil/maracuja/b1_ma racuja.pdf. (Aceso em 19 de mar de 2022).

Johansen DA (1940) Plant microtechnique. Mc Graw Hill. 523p.

Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press. 230p.

Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics, Proteomics & Bioinformatics 12:164-171. https://doi.org/10.1016/j.gpb.2014.07.003

Meletti LMM (2011) Avanços na cultura do maracujá no Brasil. Revista Brasileira de Fruticultura 33:83-91. https://doi.org/10.1590/S0100-29452011000500012

Meletti LMM, Dos Santos R, Minami K (2000). Melhoramento do Maracujazeiro-Amarelo: Obtenção do Cultivar "Composto IAC-27". Scientia Agricola 57:491-498. https://doi.org/10.1590/S0103-90162000000300019

Melo NF, Cervi AC, Guerra M (2001) Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). Plant Systematics and Evolution 226:69-84. https://doi.org/10.1007/s006060170074

Melo NF, Guerra M (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Annals of Botany 92:309-316. https://doi.org/10.1093/aob/mcg138

Melo CAF, Martins MIG, Oliveira MBM, Benko-Iseppon AM, Carvalho R. (2011) Karyotype analysis for diploid and polyploid species of the Solanum L. Plant Systematic and Evolution 293:227-235. https://doi.org/10.1007/s00606-011-0434-2

Melo CAF, Silva GS, Souza MM (2015) Establishment of genomic in situ hybridization (GISH) technique for analysis in interspecific hybrids of Passiflora. Genetics and Molecular Research 14:2176-2188. https://doi.org/10.4238/2015.March.27.4

Melo CAF, Souza MM, Silva GS (2017) Karyotype analysis by FISH and GISH techniques on artificial backcrossed interspecific hybrids involving Passiflora sublanceolata (Killip) MacDougal (Passifloraceae). Euphytica 213:160. https://doi.org/10.1007/s10681-017-1909-1

Oliveira OLS, Souza MM, Melo AF (2019) Cytogenetics and morphological delimitation between three species of Passiflora L. (subgenus Distephana Cervi). Plant Biology 21:662-669. https://doi.org/10.1111/plb.12967

Pagliarini MS (2001) Citogenética aplicada ao melhoramento. In: Nass LL, Valois ACC, Melo IS, Valadares-Inglis MC (eds) Recursos genéticos e melhoramento - Plantas, Fundação MT. p.871-910.

Paszko BA (2006) Critical review and a new proposal of karyotype asymmetry indices. Plant Systematic and Evolution 258:39-48. https://doi.org/10.1007/s00606-005-0389-2

Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. Springer-Verlag New York, Inc. 203p.

SILVA GS (2017) Análises genômicas (GISH) e citogenômicas comparativas em espécies do gênero Passiflora L. Universidade Estadual de Santa Cruz. 118p.

Souza MM, Pereira TNS (2011) Meiotic behavior in wild and domesticated species of Passiflora. Revista Brasileira de Botânica 34:63-72. https://doi.org/10.1590/S0100-84042011000100007

Souza MM, Pereira TNS,Silva LC, Reis DSS, Sudré CP (2003) Karyotype of six Passiflora species collected in the State of Rio de Janeiro. Cytologia 68:165-171. https://doi.org/10.1508/cytologia.68.165

Souza MM, Urdampilleta JD, Forni-Martins ER (2010) Improvements in cytological preparations for fluorescent in situ hybridization in Passiflora. Genetic and Molecular Research 9:2148-2155. https://doi.org/10.4238/vol9-4gmr951

Viana AJC, Souza MM (2012) Comparative cytogenetic between the species Passiflora edulis and Passiflora cacaoensis. Plant Biology 14:820-827. https://doi.org/10.1111/j.1438-8677.2011.00557.x

Viveiro Flora Brasil (2022a) Sementes de Maracujá FB300 Araguari. Disponível em: <https://viveiroflorabrasil.com.br/produto/sementes-de-maracuja-fb300-araguari/> (Acesso em 19 de mar de 2022):

Viveiro Flora Brasil (2022b) Sementes de Maracujá FB200 Yellow Master. Disponível em: <https://viveiroflorabrasil.com.br/produto/sementes-de-maracuja-fb-200-yellow-master/> (Acesso em 19 de mar de 2022):

Published

09/08/2023

How to Cite

MARROQUÍN, J. A. M.; SOUZA, M. M.; SILVA, G. S.; MELO, C. A. F.; SOUZA, V. de O.; SANTOS-SANCHÊS, R. de C. V. Comparative cytogenetics in nine cultivars of passion fruit (Passiflora edulis Sims). Científica, Dracena, SP, v. 51, p. 15, 2023. DOI: 10.5016/1984-5529.2023.v51.1372. Disponível em: http://cientifica.org.br/index.php/cientifica/article/view/1372. Acesso em: 23 nov. 2024.