Análise molecular 16S rRNA, solubilização do fostato e influência no crescimento de soja (Glycine max) e milho (Zea mays) por bactérias isoladas do solo
DOI:
https://doi.org/10.5016/1984-5529.2024.v52.1393Palavras-chave:
Bactérias solubilizadoras de fósforo (PSB), Rizobactérias promotoras de crescimento de plantas (PGPR), Bacillus spp., Acidificação de pHResumo
Os microrganismos têm participação ativa nas transformações do fósforo (P) no solo, influenciando sua disponibilidade para as plantas e seu fluxo na natureza. As transformações resultam de decomposição e mineralização de compostos orgânicos, imobilização na microbiomassa e solubilização das formas inorgânicas dos minerais. A base desse estudo consistiu em avaliar 10 isolados bacterianos, visando caracterizá-los quanto: padrão de crescimento em meio TY (Tryptone Yeast); padrão de crescimento em meio NBRIP (National Botanical Research Institute’s Phosphate); solubilização de fosfato de hidróxido de cálcio Ca5(OH)(PO4)3); variação do pH nos diferentes meios; sequenciamento parcialmente do gene 16S rRNA, e influência do crescimento, em casa de vegetação, para as culturas da soja (Glycine max) e milho (Zea mays). Entre os dez isolados, os melhores solubilizadores de P foram LGA05-V0513, LGA06-V0517 (Bacillus cereus) e LGA14-V20J (Arthrobacter echigonensis), enquanto o pior foi o isolado LGA08-V20C (Acinetobacter sp.). Os principais isolados que beneficiaram o desenvolvimento das plantas de soja e milho pertencem ao gênero Bacillus.
Referências
Abdulmalik AF, Yakasai HM, Usman S, Muhammad JB, Jagaba AH, Ibrahim S, ... Shukor MY (2023). Characterization and invitro toxicity assay of bio-reduced hexavalent chromium by Acinetobacter sp. isolated from tannery effluent. Case Studies in Chemical and Environmental Engineering 8: 100459.
https://doi.org/10.1016/j.cscee.2023.100459
Agustiyani DWI, Dewi TK, Laili NUR, Nditasari A, Antonius S (2021). Exploring biofertilizer potential of plant growth-promoting rhizobacteria candidates from different plant ecosystems. Biodiversitas Journal of Biological Diversity, 22(5).
https://doi.org/10.13057/biodiv/d220529
Alisjahbana B, Debora J, Susandi E, Darmawan G (2021). Chromobacterium violaceum: a review of an unexpected scourge. International Journal of General Medicine 14: 3259-3270. https://doi.org/10.2147/IJGM.S272193
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. Journal of molecular biology 215(3): 403-410.
https://doi.org/10.1016/S0022-2836(05)80360-2
Alves HDO, Miranda MD, Polanczyk RA, Nascimento JD, Desiderio JA, Souza JAM (2020). Integral Characterization of the 16S rRNA Gene of Non-sporulating Bacteria and Its Action Against Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae). Journal of Agricultural Science 12(12): 61-74.
https://doi.org/10.5539/jas.v12n12p61
Amarasinghe T, Madhusha C, Munaweera I, Kottegoda N (2022). Review on mechanisms of phosphate solubilization in rock phosphate fertilizer. Communications in Soil Science and Plant Analysis 53(8): 944-960.
https://doi.org/10.1080/00103624.2022.2034849
Amarasinghe T, Madhusha C, Munaweera I, Kottegoda N (2022). Review on mechanisms of phosphate solubilization in rock phosphate fertilizer. Communications in Soil Science and Plant Analysis 53(8): 944-960.
https://doi.org/10.1080/00103624.2022.2034849
Ameyu T, Asfaw E (2020). Effect of lime and P fertilizer on soybean [Glycine max L. (Merrill)] grain yield and yield components at Mettu in South Western Ethiopia. International Journal of Environmental Monitoring and Analysis, 8(5): 144-154.
https://doi.org/10.11648/j.ijema.20200805.13
Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011). Bacillus thuringiensis: a story of a successful bioinsecticide. Insect biochemistry and molecular biology 41(7): 423-431.
https://doi.org/10.1016/j.ibmb.2011.02.006
Campolino ML, dos Santos TT, de Paula Lana UG, Gomes EA, Guilhen JHS, Pastina MM, ... de Sousa SM (2023). Crop type determines the relation between root system architecture and microbial diversity indices in different phosphate fertilization conditions. Field Crops Research 295: 108893.
https://doi.org/10.1016/j.fcr.2023.108893
Chen X, Liu P, Zhao B, Zhang J, Ren B, Li Z, Wang Z (2022). Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L) and their dependency on P placement depth. Field Crops Research 276: 108378.
https://doi.org/10.1016/j.fcr.2021.108378
Ehling-Schulz M, Lereclus D, Koehler TM (2019). The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiology spectrum 7(3): 10-1128.
https://doi.org/10.1128/microbiolspec.GPP3-0032-2018
Etesami H, Adl SM (2020). Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome in stress regulation: 147-203. https://doi.org/10.1007/978-981-15-2576-6_9
Gupta M, Kumar H, Kaur S (2021). Vegetative insecticidal protein (Vip): A potential contender from Bacillus thuringiensis for efficient management of various detrimental agricultural pests. Frontiers in microbiology 12: 659736.
https://doi.org/10.3389/fmicb.2021.659736
Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series 41(41): 95-98.
Hegyi A, Nguyen TBK, Posta K (2021). Metagenomic analysis of bacterial communities in agricultural soils from Vietnam with special attention to phosphate solubilizing bacteria. Microorganisms 9(9): 1796. https://doi.org/10.3390/microorganisms9091796
Inui R, Takeshi L, Picchi S, Barbosa J, Lemos M, Marcondes J, Macedo EGL (2012). P solubilizing and IAA production activities in plant growth promoting rhizobacteria from brazilian soils under sugarcane cultivation. Journal of Engineering and Applied Sciences 7: 1446-1454.
Kour D, Kaur T, Yadav N, Rastegari AA, Singh B, Kumar V, Yadav AN (2020). Phytases from microbes in P acquisition for plant growth promotion and soil health. In: Rastegari AA, Yadav NA, Yadav N (eds) New and future developments in microbial biotechnology and bioengineering, Elsevier. p. 157-176. https://doi.org/10.1016/B978-0-12-820526-6.00011-7
Kumar S, Stecher G, Tamura K (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33(7): 1870-1874. https://doi.org/10.1093/molbev/msw054
Loke WK, Saud HM (2021). Effect of Chromobacterium violaceum on plant growth-promoting rhizobacteria (PGPR) under in-vitro conditions. Malaysian Journal of Soil Science 25: 59-65.
Lucero CT, Lorda GS, Ludueña LM, Anzuay MS, Taurian T (2020). Motility and biofilm production involved in the interaction of phosphate solubilizing endophytic strains with peanut, maize and soybean plants. Rhizosphere 15: 100228.
https://doi.org/10.1016/j.rhisph.2020.100228
Malavolta E, Vitti GC, Oliveira SD (1989). Avaliação do estado nutricional das plantas; princípios e aplicações. Associação Brasileira para Pesquisa da Potassa e do Fosfato. Potafos/Piracicaba. 201p.
Mandal NC (2021). Phosphate solubilization by plant growth promoting rhizobacteria and improvement of their potentials through biofilm formation. Journal of Mycopathology Research 58 (4): 211-220.
Mažylytė R, Kaziūnienė J, Orola L, Valkovska V, Lastauskienė E, Gegeckas A (2022). Phosphate solubilizing microorganism Bacillus sp. MVY-004 and its significance for biomineral fertilizers' development in agrobiotechnology. Biology 11(2): 254.
https://doi.org/10.3390/biology11020254
Mendes WD, Sobrinho CAM, Martins WS, Muraishi CT, de Souza MP, Adams GS, ... de Carvalho LC (2022). Efeito de bactérias solubilizadoras de fósforo na cultura da soja no Brasil: revisão de literatura. Research, Society and Development 11(16): e65111637828-e65111637828. https://doi.org/10.33448/rsd-v11i16.37828
Miranda MD, Alves HDO, Polanczyk RA, do Nascimento J, de Souza JAM (2023). Taxonomy of non-sporulating bacteria tested in biological control against Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera: Noctuidae). Journal of Agricultural Science 15(3): 42-57. https://doi.org/10.5539/jas.v15n3p42
Nosheen S, Ajmal I, Song Y (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 13(4): 1868.
https://doi.org/10.3390/su13041868
Omori WP, Camargo AFD, Goular KCS, Lemos EGDM, Souza, JAM (2016). Influence of vinasse application in the structure and composition of the bacterial community of the soil under sugarcane cultivation. International Journal of Microbiology: ID2349514.
https://doi.org/10.1155/2016/2349514
Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology 70: 5607-5612.
https://doi.org/10.1099/ijsem.0.004332
Patel D, Goswami D (2020). P solubilization and mobilization: mechanisms, current developments, and future challenge. In Yadav AN, Rastegari AA, Yadav N, Chatterjee D (eds) Advances in Plant Microbiome and Sustainable Agriculture: Functional Annotation and Future Challenges, Springer Link, p.1-20.
https://doi.org/10.1007/978-981-15-3204-7_1
Rawat P, Das S, Shankhdhar D, Shankhdhar SC (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition 21(1): 49-68.
https://doi.org/10.1007/s42729-020-00342-7
Rehman FU, Kalsoom M, Adnan M, Toor M, Zulfiqar A (2020). Plant growth promoting rhizobacteria and their mechanisms involved in agricultural crop production: A review. SunText Rev. Biotechnol 1(2): 1-6.
Sanchez-Gonzalez ME, Mora-Herrera ME, Wong-Villarreal A, De La Portilla-López N, Sanchez-Paz L, Lugo J, ... Yañez-Ocampo G (2022). Effect of pH and carbon source on phosphate solubilization by bacterial strains in Pikovskaya medium. Microorganisms, 11(1): 49. https://doi.org/10.3390/microorganisms11010049
Sebastian AM, Umesh M, Priyanka K, Preethi K (2021). Isolation of plant growth-promoting Bacillus cereus from soil and its use as a microbial inoculant. Arabian Journal for Science and Engineering 46(1): 151-161.
https://doi.org/10.1007/s13369-020-04895-8
Shalhevet J. Huck MG, Schroeder BP (1995). Root and shoot growth responses to salinity in maize and soybean. Agronomy Journal 87(3): 512-516.
https://doi.org/10.2134/agronj1995.00021962008700030019x
Silva Filho GN, Vidor C (2000) Solubilização de fosfato por microrganismos na presença de fontes de carbono. Revista Brasileira de Ciência do Solo 24: 311-319.
https://doi.org/10.1590/S0100-06832000000200008
Skerman VBD, McGowan V, Sneath PHA. (1980). Approved lists of bacterial names. International Journal of Systematic Bacteriology, 30: 225-420.
https://doi.org/10.1099/00207713-30-1-225
Song C, Wang Q, Zhang X, Sarpong CK, Wang W, Yong T, ... Yang W (2020). Crop productivity and nutrients recovery in maize-soybean additive relay intercropping systems under subtropical regions in Southwest China. International Journal of Plant Production 14: 373-387. https://doi.org/10.1007/s42106-020-00090-9
Song C, Wang W, Gan Y, Wang L, Chang X, Wang Y, Yang W (2022). Growth promotion ability of phosphate‐solubilizing bacteria from the soybean rhizosphere under maize-soybean intercropping systems. Journal of the Science of Food and Agriculture 102(4): 1430-1442. https://doi.org/10.1002/jsfa.11477
Statista (2024). Statista - The Statistics Portal for Market Data, Market ... Available in: https://www.statista.com/statistics/1287852/global-consumption-fertilizer-by-country/ (Access in 28 Mar 2024).
Sun W, Shahrajabian MH, Soleymani A (2024). The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems. Plants 13(5): 613. https://doi.org/10.3390/plants13050613
Tuipulotu DE, Mathur A, Ngo C, Man SM (2021). Bacillus cereus: epidemiology, virulence factors, and host-pathogen interactions. Trends in Microbiology 29(5): 458-471. https://doi.org/10.1016/j.tim.2020.09.003
USDA (2024). U. S. Department of Agriculture. Available in: <https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=BR> (Access in 28 Mar 2024).
Vashishth A, Tehri N, Tehri P, Sharma A, Sharma AK, Kumar V (2023). Unraveling the potential of bacterial phytases for sustainable management of phosphorous. Biotechnology and Applied Biochemistry 70(5): 1690-1706. https://doi.org/10.1002/bab.2466
Walsh M, Schenk G, Schmidt S (2023). Realising the circular P economy delivers for sustainable development goals. npj Sustainable Agriculture 1(1): 2. https://doi.org/10.1038/s44264-023-00002-0
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology 173(2): 697-703.
https://doi.org/10.1128/jb.173.2.697-703.1991
Xia L, Li X, Fan W, Wang J (2020). Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresource technology 301: 122749. https://doi.org/10.1016/j.biortech.2020.122749
Yin CF, Xu Y, Zhou NY (2020). Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. International Biodeterioration & Biodegradation 155: 105089.
https://doi.org/10.1016/j.ibiod.2020.105089
Zhou S, Guo X, Wang H, Kong D, Wang Y, Zhu J, ... Ruan Z (2016). Chromobacterium rhizoryzae sp. nov., isolated from rice roots. International journal of systematic and evolutionary microbiology 66(10): 3890-3896. https://doi.org/10.1099/ijsem.0.001284
Zhou Y, Chen X, Zhang Y, Wang W, Xu J (2012). Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. International journal of systematic and evolutionary microbiology 62(4): 764-769. https://doi.org/10.1099/ijs.0.030361-0
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Jackson Antônio Marcondes de SOUZA, Wallynson Eduardo Silva ALMEIDA

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores permanecem com os direitos autorais de tudo que publicarem na Científica. Opiniões e conceitos contidos no artigo e a fidedignidade e exatidão das informações e das referências nele apresentadas são de exclusiva responsabilidade dos autores. A reprodução parcial ou total dos trabalhos é permitida desde que seja explicitada a fonte de referência.