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Abstract 

Soil chemical and physical attributes are important in any agricultural cropping system, but in precision agriculture 

they are more relevant due to the possibility of application using different management practices along a produc-

tion field. However, the correlation between these attributes has been little explored in the delineation of man-

agement zones. This work aims to maximize the use of joint spatial variability for soil attributes. Its secondary 

objectives were 1) reduction of spatial variability dimensionality among all attributes and 2) assessment of agree-

ment between univariate and multivariate management zones. The management zones resulting from the inter-

polation of attribute values, as well as from the scores of each of the three main components, were delineated 

using the Fuzzy c-means algorithm. The fuzzy performance and modified partition entropy indexes were used to 

determine the optimal number of management zones. The Kappa index was used to evaluate the agreement of 

management zones obtained from attributes with those obtained from principal components. By using principal 

component analysis, it was possible to reduce the dimensionality of the number of variables that contribute to the 

joint spatial variability existing in the study area. There was no complete agreement between the uni- and multi-

variate management zones outlined, which is why further studies on the subject are needed. 
 
Additional keywords: Fuzzy c-means algorithm; geostatistics; principal component; spatial variability. 

 

Resumo 

Os atributos químicos e físicos do solo são importantes em qualquer sistema de cultivo agrícola, porém na agri-

cultura de precisão eles recebem maior atenção devido à possibilidade de aplicação em práticas de manejo dife-

renciadas ao longo de um campo de produção. Todavia, a correlação entre esses atributos tem sido pouco ex-

plorada no delineamento de zonas de manejo. Com este trabalho, objetivou-se maximizar o uso da variabilidade 

espacial conjunta entre os atributos de solo. Seus objetivos secundários foram: 1) redução da dimensionalidade 

da variabilidade espacial entre todos os atributos e 2) avaliação da concordância entre as zonas de manejo uni-

variadas e as multivariadas. As zonas de manejo resultantes da interpolação dos valores dos atributos, assim 

como a partir dos escores de cada uma das três componentes principais, foram delineadas com o uso do algo-

ritmo Fuzzy c-means. Os índices de performance Fuzzy e de partição da entropia modificada foram utilizados 

para determinar o número ótimo de zonas de manejo. O índice Kappa foi empregado para avaliar a concordância 

das zonas de manejo obtidas a partir dos atributos com aquelas obtidas a partir das componentes principais. 

Com o uso da análise de componentes principais foi possível reduzir a dimensionalidade do número de variáveis 

que contribuem para a variabilidade espacial conjunta existente na área em estudo. E não houve concordância 

completa entre as zonas de manejo uni e multivariadas delineadas, razão por que mais estudos sobre o assunto 

são necessários.  
 
Palavras-chave adicionais: algoritmo Fuzzy c-means; componente principal; geoestatística; variabilidade 

espacial. 
 
Introduction 

 
Precision agriculture (PA) is defined by 

Inamasu & Bernardi (2014) as an agricultural man-
agement system based on spatial and temporal varia-
bility of agricultural production fields and aims to 

increase economic returns and sustainability and 
minimize effects on the environment. For the develop-
ment of this activity, it is essential to know the attributes 
within these management zones. Several researches 
focusing on PA have suggested the evaluation of spa-
tial variability of soil attributes. 
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A study by Rodrigues & Corá (2015) showed 
that the preliminary evaluation of spatial variability of 
soil physical and chemical attributes is essential for a 
good crop management. Based on the information of 
these attributes, it is possible to map the patterns of 
variability of production factors. This mapping enables 
the establishment of zones where cultural manage-
ment should be homogeneous, which allows the appli-
cation of the amount of fertilizer effectively needed in 
each point. Therefore, localized input application tech-
niques are very important for a sustainable agricultural 
production, that is, a production that seeks to obtain 
high-quality products, using techniques that guarantee 
sustainability and preserve the soil and the environ-
ment. 

According to Sylvester-Bradley et al. (1999), 
the relation between cost and quality in precision agri-
culture depends mainly on the delineation of manage-
ment zones within potential fields for agricultural prac-
tice. Identifying these management zones is an              
important step towards good practices in precision 
agriculture. To this end, account should be taken of this 
identification of spatial variability of crop productivity 
and the soil physical and chemical properties, which 
play a fundamental role in agricultural production. 

Several authors have argued that the evalua-

tion of spatial variability of soil physical and chemical 

properties within specific zones is also important for the 

evaluation of potential use of variable rates (Beckett, 

1971; Stafford, 1996). Several studies, such as those 

by Silva et al. (2010c) and Silva & Lima (2012), have 

pointed out that an irregular distribution of chemical 

and physical properties has been a major challenge for 

precision agriculture. This is especially true when such 

distribution occurs in zones with higher concentrations 

of attributes that, in many situations, are correlated. 

Multivariate analysis techniques could be used for the 

outlining of management zones.  
Multivariate data analysis procedures have 

been highlighted in studies related to many spatially 
correlated attributes. Principal component analysis 
(PCA) is a multivariate technique in which, from 𝑝 
correlated variables, a number of variables is obtained 
𝑞<𝑝, so that, such q independent variables, explain 
much of the variability contained in 𝑝 original variables 
(Junior, 2012; Mingoti, 2005). The principal 
components are obtained in such a way that the former 
explains the largest variance present in 𝑝 variables 
(Ribeiro Júnior, 2012; Li et al. 2007; Mingoti, 2005; 
Johnson & Wichern, 2002). PCA has been used in 
precision agriculture works, as in the study by Silva et 
al. (2010a), in which the objective was to analyze the 
spatial variability of chemical attributes of a humic Red-
Yellow Latosol, and in the study by Li et al. (2007), in 
which one of the objectives was to characterize the 
spatial variability of the soil and the landscape 
attributes that affect crop productivity. 

This work aims to maximize the use of joint 
spatial variability for soil attributes. Its secondary objec-
tives were 1) reduction of spatial variability dimension-

ality among all attributes and 2) assessment of agree-
ment between univariate and multivariate management 
zones. 

 
Materials and methods 

Description of the study area and data collection 

The experiment was carried out in an area 
located at the coordinates 16º28'20" S and 49º00'32" 
N, in the municipality of Goianápolis, Goiás (GO) state, 
Brazil. The soil of the area was classified as Red-               
-Yellow Latosol according to the Brazilian Soil 
Classification System (Santos et al., 2017). 

Data collection was performed on a 150-point 
sampling grid over an area of 75 hectares. The sample 
points were georeferenced using a Global Navigation 
Satellite System (GNSS) receiver. This database origi-
nated from the work of Costa (2011). 

In each of the 150 points, 13 chemical 
attributes and one physical attribute of the soil were 
measured. The chemical attributes measured were 
potential of hydrogen (pH in water), phosphorus (P), 
potassium (K+), calcium (Ca2+), magnesium (Mg2+), 
copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), 
organic matter (OM), sulfur (S), boron (B), and 
electrical conductivity of the saturation extract (Ec). 
The measured physical attribute was clay. 

The first stage of data analysis consisted of 
descriptive analysis of chemical and physical attributes 
with the objective of statistically describing their distri-
butions. The Shapiro & Wilk (1968) normality test was 
also performed to verify whether the probability distri-
bution associated with each chemical and physical 
attribute approximates a normal distribution. 
 
Statistical analysis 

Univariate analysis of attributes 

Initially, descriptive statistics were obtained for 
each attribute 𝑍𝑖 (so that 𝑖 = 1, ⋯ ,14) to obtain distribu-
tions, dispersions and relations between the attributes. 
Multivariate analysis methodologies assume that the 
variables (attributes) under analysis are related.  
 
Multivariate analysis of attributes 

The PCA was used to reduce the dimension-
ality of spatial variability to outline management zones. 
Considering the correlation between the p = 14 attrib-
utes (13 chemical and one physical), the 𝑌𝑗 principal 
components were selected so that j = 1, ⋯ ,q and   
q<p. There are several criteria for determining the 
optimal number of principal components. In this paper, 
we used the criterion presented by Kaiser (1960), 
which considers for analysis all principal components 
that have eigenvalues greater than 1. This criterion 
was also described by Dunteman (1989) and Johnson 
& Wichern (2002), according to whom the principal 
components with high eigenvalues are considered 
better since they explain a greater variance of p origi-
nal variables. 
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Analysis of spatial variability 

For each 𝑍𝑖 attribute and principal component 
𝑌𝑗, the theoretical variogram model that best fitted the 

empirical variogram was selected. For each of the 14 
attributes, semivariance values (Webster & Oliver, 
1990) were obtained by: 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍𝑠𝑖(𝛼)  − 𝑍𝑠𝑖(𝛼 + ℎ) ]2

𝑁(ℎ)

𝑠=1

 

wherein [𝑍𝑠𝑖(𝛼); 𝑍𝑠𝑖(𝛼 + ℎ)] represents each of the s 

value pairs of the attribute 𝑍𝑖(𝛼) at positions α and  α +
h, and 𝑁(ℎ) is the number of value pairs that satisfy 

the separation distance h. However, for each principal 
component, the semivariance values were obtained by 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑌𝑠𝑗(𝛼)  − 𝑌𝑠𝑗(𝛼 + ℎ) ]

2

𝑁(ℎ)

𝑠=1

 

where [𝑌𝑠𝑗(𝛼); 𝑌𝑠𝑗(𝛼 + ℎ)] represents each of the 𝑠 

value pairs of the principal component 𝑌𝑗(𝛼) at posi-

tions 𝛼 and 𝛼 + ℎ, and 𝑁(ℎ) is the number of value 
pairs that satisfy the separation distance ℎ. 

From each of the selected variogram theoreti-
cal models, ordinary kriging interpolated maps were 
plotted (Isaaks & Srivastava, 1989; Wackernagel, 
2003; Webster & Oliver, 2007). The cross-validation 
statistics was used in both the selection of the 
variogram theoretical model and in the definition of the 
search neighborhood to perform the ordinary kriging for 
each attribute.  

From each of the maps plotted, management 
zones were defined by Fuzzy c-means clustering, a 

method which, according to Hartigan (1975), aims to 
partition all observations into c groups, in which each 
observation is automatically assigned to a group closer 
to the mean. The optimal number of partitions was 
defined by the joint evaluation of two indexes, the fuzzy 
performance index (FPI), and the modified partition 
entropy index (MPE), according to Gorsevski et al. 
(2003). Several studies have used FPI and MPE 
indexes in outlining management zones, such as Li et 
al. (2007) and Rodrigues et al. (2015). Six clusters 
were considered as the maximum number of 
management zones for each 𝑃𝐶𝑗, and scenarios with 
two, three, four, five and six classes were simulated. 
The optimal number of management zones for each 
𝑃𝐶𝑗 was determined by the point from which FPI and 
MPE values were minimum. 

This number of clusters is commonly used in 
several works on precision agriculture. It aims to de-
termine the optimal number of management zones       
(Li et al., 2007; Rodrigues et al., 2015; Oldoni & 
Bassoi, 2016). 

The Kappa index, according to Congalton & 

Mead (1986), was used to evaluate the agreement of 

management zones defined by attributes and those 

defined by main components. 

 
Results and discussion 

 

Descriptive statistics of attributes 

Figures 1 to 4 show the boxplots and the sta-

tistical values (mean, median, standard deviation, per-

centage of coefficient of variation, and Shapiro-Wilk 

test for normality) of all attributes considered in this 

research.  

 

 

m - Mean; md - Median; sd - Standard deviation; CV% - Coefficient of variation (%); w - Shapiro-Wilk statistics for normality test; and                                 
* - Normality test significant at 5% probability. 

Figure 1 - Boxplots of the chemical attributes: Ca - Calcium, pH - Potential of hydrogen, K - Potassium, and              
Mn - Manganese. 
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m - Mean; md - Median; sd - Standard deviation; CV% - Coefficient of variation (%); w - Shapiro-Wilk statistics for normality test; and                                 
* - Normality test significant at 5%. 

Figure 2 - Boxplots of the chemical attributes: Fe - Iron, EC - electrical conductivity of saturation extract,                     
OM - organic matter, and B - boron. 

 

 

m - Mean; md - Median; sd - Standard deviation; CV% - Coefficient of variation (%); w - Shapiro-Wilk statistics for normality test; and                                 
* - Normality test significant at 5%. 

Figure 3 - Boxplots of the physical (Clay), and chemical attributes: S - Sulphur, Mg - Magnesium and Cu - 
Cooper. 
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m - Mean; md - Median; sd - Standard deviation; CV% - Coefficient of variation (%); w - Shapiro-Wilk statistics for normality test; and                                 
* - Normality test significant at 5%. 

Figure 4 - Boxplots of the chemical attributes: Zn - Zinc and P - Phosphorus.  
 

The chemical attribute electrical conductivity of 
saturation extract (EC) was the only one following a 
distribution with an asymmetry coefficient close to zero 
and test for non-significant normality. The other 
attributes, besides presenting a significant test for 
normality, showed negative asymmetry coefficients 
(hydrogen potential, calcium and manganese) or 
positive asymmetry coefficients (phosphorus, potas-
sium, magnesium, copper, iron, zinc, organic matter, 
sulfur, boron, and clay). However, interpolation was 
performed for all attributes since the assumption of 
normality is not a requirement for ordinary kriging. 

The presence of outliers is a common char-
acteristic between chemical attributes and the physical 
attribute considered in this work and may be a factor 
explaining the lack of symmetry observed. A relative 
similarity was observed in the dispersion of chemical 
and physical attributes, according to Figures 1 to 4, 
since the chemical attribute (zinc) has characteristics 
that make it a high dispersion attribute due to the pres-
ence of higher values of outliers. 

Warrick & Nielsen (1980) proposed dispersion 
classes according to the value of the coefficient of 
variation expressed as a percentage (CV%). According 
to these authors, low dispersion occurs when 
CV%<12, medium dispersion when 12≤CV%≤60, and 
high dispersion when CV%>60. Therefore, a low 
dispersion was observed (Figures 1 to 4) for potential 
of hydrogen and clay and high dispersion was 
observed for zinc. The other attributes presented an 
average dispersion. Santos et al. (2017), evaluating 
the fertility of a soil cultivated with cacao, found similar 
values as this work. According to the authors, the soil 
chemical attributes tend to vary more than physical and 
physical-chemical ones, which helps to understand the 
soil system and adopt localized management prac-
tices. Similar results were also reported by Costa 
(2011) in a study aiming to evaluate the spatial and 
temporal variability of the apparent soil electrical 
conductivity. 

In general, according to the results of Figures 

1 to 4, the soil of the studied area presents fertility 

restrictions for the development and production of 

different agricultural crops. The lack of natural fertility is 

a particular feature of Brazilian Latosols, characterized 

by depth of the diagnostic horizon, high weathering, 

and low natural fertility (Santos et al., 2017). Despite 

the natural characteristics of the soil, agronomic 

management practices can improve its fertility 

conditions, making the soils more fertile and allowing 

the exploitation of the productive potential of crops 

(Silva & Lima, 2014). 

One of the assumptions for performing a mul-

tivariate analysis is the correlation between the attrib-

utes. Figure 5 shows the Pearson correlation matrix 

among the attributes evaluated. It shows a considera-

ble number of chemical attribute pairs with moderate 

(0.40≤|r|≤0.59) and strong (0.60≤ |r|≤0.89) correla-

tions. Figure 5 also shows that there are three 

chemical attributes with at least a moderate correlation 

with the calcium attribute, namely potential of hydro-

gen, magnesium, and iron. The correlation of Ca2+ with 

different chemical attributes shows that this is the most 

abundant cation in the soil solution, dominating the 

loads in the soil assortment complex. However, 

according to Albuquerque (2004), an at least moder-

ately negative correlation between Ca2+ and Fe may be 

evidence of iron chlorosis in the study area, which 

occurs when there is iron deficiency in the soil. 

At least moderate significant correlations be-

tween attributes indicate that the respective pair of 

attributes will have similar weights in the same main 

component. 

Principal component analysis 

The first five principal components (𝑃𝐶𝑗 to 
j=1,⋯, 5), retained by the Kaiser criterion presented 
previously, explain 64.35% of the total variability of the 
14 attributes (Table 1). The first principal component 
explains individually 21.32% of total variability, while 
the fifth explains only 8.01%. The coefficients associ-
ated with each of the 14 attributes in each 𝑃𝐶𝑗, as well 
as the correlation of each coefficient with their 
attributes, are presented in Table 1. 
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pH - Potential of hydrogen; P - Phosphorus; K - Potassium; Ca - Calcium; Mg - Magnesium; OM - Organic matter; Zn - Zinc; Cu - Cooper;                  
Fe - Iron; Mn - Manganese; B - Boron; S - Sulphur; and EC - Electrical conductivity of saturation extract. 

Figure 5 - Matrix of correlations between chemical attributes and physical attribute measured at 150 points in the 

study area. 

Table 1 - Eigenvector estimates and correlation of PCj for j = 1, ⋯, 5, with soil chemical and physical attributes.  

Attribute 
Eigenvector Correlation 

𝑃𝐶1 𝑃𝐶2 𝑃𝐶3 𝑃𝐶4 𝑃𝐶5 𝑃𝐶1 𝑃𝐶2 𝑃𝐶3 𝑃𝐶4 𝑃𝐶5 

pH -0.30 0.48 -0.14 0.04 0.01 -0.22 0.38 -0.13 -0.02 0.32 

P -0.12 -0.03 0.65 0.14 0.09 -0.15 -0.03 0.62 -0.02 0.05 

K -0.10 -0.39 0.18 -0.34 -0.23 -0.42 -0.84 0.40 -0.59 -0.77 

Ca -0.44 0.26 0.02 0.17 -0.03 -0.43 0.13 0.02 -0.12 0.10 

Mg -0.49 0.00 -0.04 0.19 -0.02 -0.56 -0.13 -0.08 -0.12 -0.04 

OM -0.26 -0.40 -0.03 0.17 0.08 -0.42 -0.43 -0.07 -0.15 -0.27 

Zn -0.31 -0.10 0.43 0.01 0.20 -0.45 -0.18 0.38 -0.16 -0.07 

Cu -0.09 -0.34 0.04 -0.06 0.33 -0.21 -0.26 0.00 -0.07 -0.03 

Fe 0.34 -0.20 0.17 0.28 -0.17 0.66 -0.18 0.15 0.35 -0.30 

Mn -0.23 -0.25 -0.41 0.11 -0.15 -0.54 -0.45 -0.66 0.12 -0.36 

B -0.18 -0.13 -0.05 -0.49 -0.47 0.39 -0.26 0.01 -0.29 -0.26 

S -0.06 0.01 0.19 0.36 -0.69 0.01 -0.04 0.13 0.18 -0.47 

Clay -0.16 -0.36 -0.26 0.13 0.13 -0.27 -0.42 -0.29 0.09 -0.07 

EC -0.17 0.14 0.16 -0.52 0.03 -0.51 -0.27 0.38 -0.81 0.13 

Eigenvector 2.99 2.19 1.50 1.29 1.12           

𝑠2% 21.32 15.68 10.73 9.21 8.01 
     

𝑠𝑗
2% 21.32 36.40 47.13 56.34 64.35           

PCj - j-th principal component, so that j = 1, ⋯, 5; pH - potential of hydrogen; P - Phosphorus; K - Potassium; Ca - Calcium; Mg - Magnesium;    
OM - Organic matter; Zn - Zinc; Cu - Copper; Fe - Iron; Mn - Manganese; B - Boron; S - Sulfur; EC - Electrical conductivity of saturation extract; 
s2% - Percentage of the proportion of variance explained by PCj; and sj

2% - Percentage of the proportion of explained and cumulative variance 
up to PCj. 
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As expected, attributes with a high absolute 

value in a given 𝑃𝐶𝑗 also presented a large absolute 

value for the Pearson coefficient  r. Similar results were 

obtained by Silva & Lima (2012) and Jimenez-

Espinosa et al. (1993). In these two studies, the 

authors found that the attributes presented, in large 

part, both scores and correlations of great magnitude 

in the first principal component. 

A large correlation value (𝑟 > 0.5) indicates 

the importance of a given attribute on the variability 

explained by that principal component. Thus, the signal 

and magnitude of these correlations allow us to group 

the attributes and interpret their contribution in 𝑃𝐶𝑗. 

Thus, sample points that show a great magnitude for 

magnesium, manganese and electrical conductivity of 

the saturation extract contribute to decrease 𝑃𝐶1 

scores. However, points of great magnitude, such as 

iron, help to increase the 𝑃𝐶1 score. The interpolation 

map of this component could, in principle, be used for 

the management of these elements in the focus area.  

Higher scores of 𝑃𝐶3 indicate high phosphorus 

and low manganese soils. Interpolation maps plotted 

using this component can facilitate phosphorus fertili-

zation and manganese management since in soils with 

predominance of low-crystallinity Mn oxides, manganic 

oxides tend to adsorb phosphorus (Gonçalves et al. 

2011).  

Electrical conductivity and potassium were the 

only attributes that showed 𝑟 > 0.5 in 𝑃𝐶4 and, there-

fore, are responsible for explaining much of the varia-

bility summarized by this component. The attribute 

potassium was the only one to have 𝑟 > 0.5 in compo-

nents 𝑃𝐶2 and 𝑃𝐶5. Thus, as the variability explained 

by the potassium attribute will already be considered 

when obtaining management zones from component 

𝑃𝐶4, management zones for components 𝑃𝐶2 and 𝑃𝐶5 

will not be obtained, as they depend basically on the 

potassium attribute. 

As mentioned earlier, each 𝑃𝐶𝑗 𝑗 = 1, . . . ,5, 

represents a group of chemical and physical attributes 

in the area. The PCA aims to capture the maximum 

variability of these attributes using a number of 𝑃𝐶𝑗 

lower than the number of attributes. The components 

𝑃𝐶𝑗 thus obtained can facilitate management by defin-

ing management zones using 𝑃𝐶𝑗. The use of PCA 

from a geostatistical point of view was initially made by 

Davis & Greenes (1983) and later applied by other 

authors (Li et al., 2007; Silva et al., 2010a; Silva et al., 

2010b; Barnett & Deutsch, 2012; Silva & Lima, 2012).  

 

Analysis of spatial variability 

The selected variogram models, as well as the 

cross-validation statistics for each 𝑃𝐶𝑗 and also for 

each attribute that presented 𝑟 > 0.5 with the 

coefficients in each 𝑃𝐶𝑗, are presented in Table 2. 

For all attributes and for all 𝑃𝐶𝑗, it was possible 

to fit a theoretical variogram model (spherical or expo-

nential). This result indicates that the reduction in the 

dimensionality of the number of attributes performed by 

principal component analysis did not result in the im-

possibility of characterizing spatial variability. This indi-

cates the potential of this methodology for simplifying 

analysis considering many attributes. However, it is 

noteworthy that the variogram model selected for a 

given 𝑃𝐶𝑗 did not always coincide with the model cho-

sen for each of its attributes with the highest contribu-

tion. The results obtained in this research corroborate 

those found by Silva et al. (2010a) and Silva & Lima 

(2012), who also found spatial variability for principal 

components fitted using soil chemical, physical and 

physical-chemical attributes. 

The analysis of the cross-validation results of 

the models fitted to 𝑃𝐶𝑗 was performed according to 

Webster & Oliver (1990), and consisted of selecting the 

models that present a mean standard error (MSE) 

close to zero and a root mean square of standardized 

errors (RMSSE) close to 1. We also analyzed the 

intercept (𝛽̂0) and the slope (𝛽̂1) estimates of the first-

degree linear regression model adjusted to the values 

observed in function of values predicted, whose ideal 

values are 0 and 1, respectively, according to Vieira 

(2000). All models selected and presented in Table 2 

met these cross-validation criteria. However, the attrib-

utes manganese and electrical conductivity of the satu-

ration extract were 𝛽̂0 far from zero. 

Several researches conducted mainly on pre-

cision agriculture used these cross-validation meas-

urements. Burak et al. (2010) obtained results very 

close to those obtained in this study. Chen et al. (2018) 

also used MSE and RMSSE in a work aiming to map 

the spatial variability of soil chemical and physical 

attributes. 

 

Outlining of management zones 

The outlining of management zones is one of 

the most important phases in precision agriculture 

(Molin et al., 2015), as it allows a differentiated man-

agement at each point of the production area and op-

timizes productivity. Management zones were defined 

for each 𝑃𝐶𝑗 using the interpolated map of their scores.  

For each class number, the values of two vali-

dation functions were calculated, namely FPI and MPE 

(Figure 6). The minimum FPI and MPE values for the 

principal components 𝑃𝐶1, 𝑃𝐶3 and 𝑃𝐶4 were 6, 3 and 

3, respectively. 

Using the Fuzzy c-means algorithm, manage-

ment zones of each 𝑃𝐶𝑗 were outlined. They are pre-

sented in Figure 7. 
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Table 2 - Theoretical models, experimental semivariance parameter estimates, respective cross-validations of 
each of the main interpretable components, PCj, j = 1, 3, 4, and the six chemical and physical attributes that 
showed the greatest contribution in PCj. 

𝑃𝐶𝑗 or 

Attribute 
Model 

Parameters of semivariance Cross-validation 

a (m) C0 C0+C1 MSE RMSSE 𝛽̂0 𝛽̂1 

𝑃𝐶1 Spherical 460.00 8.00 24.00 0.00 0.90 1.99 1.07 

𝑃𝐶3 Spherical 349.00 18.00 45.00 0.00 1.01 -0.11 1.01 

𝑃𝐶4 Exponential 600.00 25.00 60.00 0.00 1.10 -0.86 0.98 

Mg Spherical 300.00 0.01 0.02 0.00 1.04 0.40 0.60 

Fe Spherical 500.00 7.00 30.00 0.00 1.00 -0.94 1.04 

Mn Spherical 373.00 30.00 90.00 0.00 0.72 -2.55 1.01 

EC Spherical 220.00 45.00 145.00 0.00 1.03 9.72 0.87 

K Spherical 600.00 80.00 220.00 0.00 1.23 0.74 0.99 

P Spherical 100.00 6.00 15.00 0.00 0.17 -0.29 1.04 

𝑃𝐶𝑗  - Principal component 𝑗, so that 𝑗 = 1, 3, 4; Mg - Magnesium, Fe - Iron, Mn - Manganese, EC - Electrical conductivity of saturation extract,       

K - Potassium, P - Phosphorus, 𝑎 - Range in meters, C0 - Nugget effect, C0 + C1 - threshold, MSE - mean standard errors, RMSSE - root mean 

square of standard errors; 𝛽̂0, 𝛽̂1 - Regression coefficients between the observed values and the values predicted by ordinary kriging. 

 

 

Figure 6 - Fuzzy performance index and modified partition entropy for the three interpretable main components 
𝑃𝐶𝑗, 𝑗 = 1, 3, 4; FPI - Fuzzy performance index; MPE - Modified partition entropy.  

 

A hypothesis test for the Kappa index was 

performed to assess agreement and significance 

(Congalton & Mead, 1986) among management zones 

obtained from 𝑃𝐶𝑗 and zones obtained from attributes 

with the highest contributions in 𝑃𝐶𝑗 (Table 3). 
This agreement was observed among the 

management zones obtained for the chemical 
attributes iron, manganese and conductivity of the 
saturation extract and those obtained for 𝑃𝐶1. 
However, it is noteworthy that the attribute magnesium 

did not show such agreement. The management 
zones obtained for 𝑃𝐶3 had an agreement with zones 
obtained for manganese and non-agreement for the 
attribute phosphorus. Both attributes with the highest 
contribution in 𝑃𝐶4  had no agreement with the zones 
delineated for that principal component. Results similar 
as those of this work were obtained by Carvalho (2016) 
regarding the Kappa index variation. The author 
obtained Kappa indexes with a classification ranging 
from not significant to significant. 
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Table 3 - Kappa index of the classification between the three principal components and six chemical and physical 
attributes that presented the greatest contribution in the PCj. 

𝑃𝐶𝑗: Principal component 𝑗, so that 𝑗 = 1, 3, 4; Mg: Magnesium, Fe: Iron; Mn: Manganese; EC: Electrical conductivy of saturation extract;                   

K: Potassium; P: Phosphorus; and *: significant to 5%. 

 
For some attributes with a large contribution in 

a 𝑃𝐶𝑗, the absence of a significant agreement does not 

compromise the results of this work. There is a possi-
bility of using this technique in precision agriculture, as 
has been reported in the literature (Li et al., 2007; 
Molin & Castro, 2008). These authors considered a 
great correlation that existed between the attributes 
and their respective 𝑃𝐶𝑗 as one of the factors that could 

explain the greater interest in 𝑃𝐶 for the outlining of 
management zones.  

According to Fridgen et al. (2004), the agree-
ment of FPI and MPE indexes in each 𝑃𝐶𝑗 is an indica-

tion of a good classification. The interpolated maps 
with their respective management zones defined for 
each 𝑃𝐶𝑗 , 𝑗 = 1, 3, 4, are shown in Figure 7. This 

Figure shows spatial pattern differences between the 
management zones outlined for each 𝑃𝐶𝑗, a fact that 

can be explained by the different contributions of the 
attributes in each 𝑃𝐶𝑗. The management zones 

obtained from interpolated maps of 𝑃𝐶1 show a more 
irregular spatial distribution pattern than those obtained 
from the maps of 𝑃𝐶3 and 𝑃𝐶4, a fact that can be 
explained by the higher number of management zones 
outlined based on the principal component 𝑃𝐶1. In 
addition, the regularity of the spatial distribution pattern 
of 𝑃𝐶𝑗 management zones was similar as that of the 

attributes with 𝑟 > 0.5. An example of this result is the 
similarity of the pattern of spatial distribution of the 
attribute iron and the 𝑃𝐶1. A similar result was also 
obtained by Rodrigues & Corá (2015) in a work that 
aimed to identify management zones using the algo-
rithm of fuzzy c-means clustering based on spatial and 
temporal variability of soil attributes and corn yield. 

 

 

 Fe - Iron; Mn - Manganese; EC - Electrical conductivy of saturation extract 

 
Figure 7 - Management zones defined by the Fuzzy c-means method from the spatial variability maps of the prin-

cipal component PCj, so that j = 1, 3, 4, and maps of the three chemical attributes that showed a significant agree-

ment with at least one principal component. 
 

𝑃𝐶𝑗 
Attributes 

Mg Fe Mn EC K P 

𝑃𝐶1 -0.04 0.04* 0.04* 0.04* 
  

𝑃𝐶3 
  

0.06* 
  

-0.06 

𝑃𝐶4 
   

-0.03 -0.03 
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Conclusions 

 
The multivariate analysis of principal compo-

nents allows reducing the dimensionality of the number 
of soil chemical attributes, which results in components 
susceptible to agronomic interpretation. 

It is possible to jointly describe the pattern of 
spatial distribution of chemical, physical and physical-
chemical soil attributes using the scores of principal 
components. 

The outlining of management zones using 
principal components did not present consistent results 
that allow the immediate use of techniques for preci-
sion agriculture. 

Although there was no complete agreement 
between uni- and multivariate management zones 
outlined, the management of each chemical and physi-
cal attribute can in principle be performed within its 
management zone, as each attribute contributes with a 
fraction of the variance of the principal component. 
Therefore, further studies are needed. 
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