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Abstract 

This study compares two different methods for survival data analysis in the presence of competing events. The 
first method focused on standard survival analysis, more specifically on obtaining cumulative incidence by using 
the Kaplan-Meier estimator, modeling the effect of covariates by fitting the Cox proportional hazards model. Com-
peting events were treated as censoring events. The second method, called competing risks, emphasized the 
achievement of cumulative incidence, modeling the effect of covariates based on the cumulative incidence func-
tion and the Fine and Gray model, respectively. To illustrate and compare these two methods, we used data on 
racehorse injuries. This study considered the following events: injuries due to claudication (main event) and inju-
ries due to other causes (competing event). The results indicated that the incidence for each of the events was 
overestimated when using the Kaplan-Meier estimator. Moreover, the modeling of covariate effects on specific 
risk fitted by the Cox model did not correspond to the effect on the incidence of this event fitted by the Fine and 
Gray model. 
 
Additional keywords: Cox Model; Fine and Gray Model; Kaplan-Meier. 

 
Resumo 

O objetivo deste trabalho foi confrontar duas distintas abordagens na análise de dados de sobrevivência na pre-
sença de eventos competitivos. A primeira abordagem focou-se na análise de sobrevivência padrão, mais espe-
cificadamente, na obtenção da incidência cumulativa por meio do uso do complemento do estimador de    
Kaplan-Meier, e na modelagem do efeito das covariáveis pelo ajuste do modelo de riscos proporcionais de Cox. 
Nesta abordagem, os eventos competitivos foram tratados como censura. A segunda abordagem, denominada 
riscos competitivos, enfatizou a obtenção da incidência cumulativa e a modelagem do efeito das covariáveis, 
tendo como base, respectivamente, a função de incidência cumulativa e o modelo de Fine e Gray. Para a 
ilustração e a comparação destas duas metodologias, utilizou-se de dados referentes a lesões em equinos de 
corrida. Os eventos considerados neste estudo foram lesões devido à claudicação (evento principal) e lesões 
decorrente de outras injúrias (evento competitivo). Os resultados encontrados indicaram que a estimativa da 
incidência para cada um dos eventos, quando se utilizou do estimador de Kaplan-Meier, foi superestimada. Além 
disso, a modelagem dos efeitos das covariáveis sobre o risco específico, ajustado pelo modelo de Cox, não 
correspondeu ao efeito sobre a incidência deste evento ajustado pelo modelo de Fine e Gray. 
 
Palavras-chave adicionais: Kaplan-Meier; Modelo de Cox; Modelo de Fine e Gray. 
 
Introduction 

 

A classic problem in modeling survival times is 
failure due to several distinct events, called competing 
events, which introduce competing risks (Aalen et al., 
2008). Although there are different types of failures, it is 
possible to observe the time until the occurrence of the 
first event, preventing others from happening (Carvalho 

et al., 2011) or fundamentally altering the probability of 
occurrence of these other types of events (Gooley et 
al. 1999). Thus, the competing risk structure can be 
used if different types of events are studied focusing on 
the time and type of the first event (Wolbers et al., 
2014; Beyersmann et al., 2012). 

 In competing risk analysis, the calculation of 
the incidence function as well as the measurement of 
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the effects of covariates are often of interest (Kim, 
2007). The cumulative incidence function represents 
the probability of an event occurring, and the estima-
tion of this quantity in survival analysis without com-
peting risks is obtained by means of the complement of 

the survival function, that is, by 1 − �̂�(𝑡), where �̂�(𝑡) is 
obtained by using the Kaplan-Meier estimator. How-
ever, in the presence of competing events, studies 
have pointed to the inadequacy of this estimator in 
obtaining cumulative incidence for a specific cause 
(Andersen et al., 2012; Kim, 2007; Gooley et al., 1999). 

In the presence of competing risks, the inci-
dence based on the Kaplan-Meier estimator is overes-
timated (Carvalho et al., 2011). This occurs because 
this estimator ignores all events other than that of 
interest, considering them as censoring events. To 
overcome this problem, we use the cumulative inci-
dence function, also called subdistribution, which esti-
mates the probability of occurrence of an event of 
interest without disregarding the competing event. 

In many applications, competing risks have 
been ignored when modeling covariate effects, fitting 
the Cox regression model (Wolbers et al., 2009). Thus, 
the Cox model models the cause-specific hazard for 
the kth event, 𝜆𝑘(𝑡), given by: 

𝜆𝑘(𝑡) = lim
Δ𝑡→0

{
𝑃(𝑡 ≤ 𝑇 < 𝑡 +  Δ𝑡, 𝜀 = 𝑘|𝑇 ≥ 𝑡)

Δ𝑡
}  

and represents the probability of an individual failing in 
a short time interval. 

In this model, competing risks are ignored and, 
therefore, the covariate effect reflects the “pure” effect, 
or rather, the effect when other types of events do not 
exist (Pintilie, 2006). Furthermore, the covariate effect 
on the cause-specific hazard of an event, when using 
the Cox model, may differ from the covariate effect on 
the incidence of this event when considering the com-
peting risk (Kim, 2007). As the Cox model does not 
have a direct interpretation in terms of the incidence 
function (Scrucca et al., 2010), Fine & Gray (1999) 
proposed a model for cumulative incidence risk. This 
model allows to directly evaluate the effect of cova-
riates on the cumulative incidence function. 

Thus, the present study compares the 
approach based on standard survival analysis with the 
approach based on competing risks in the estimation of 
cumulative incidence, also comparing the standard 
Cox regression model with the Fine and Gray model in 
the modeling of data on racehorse injuries. 

 
Materials and methods 

 
The data used in this study refer to 158 Eng-

lish Thoroughbred (ETB) horses that remained in the 
Training Center in Pedro do Rio, Petrópolis city, RJ 
State, from January 2001 to December 2003. The 
response variable is the time until the first failure, the 
main event was failure due to claudication, while the 
competing event was failure due to other injuries. Of 

the 158 animals, 90 (57%) experienced the main event 
(claudication), 27 (17.1%) experienced the competing 
event (other injuries), and 41 (25.9%) had not expe-
rienced none of the events, that is, were censored. 

Based on the Kaplan-Meier estimator, the total 
probability of occurrence of an event, regardless of type 

of injury, was obtained using the expression �̂�(𝑡) = 1 −
�̂�(𝑡), where �̂�(𝑡) is the event-free survival provided by 
the Kaplan-Meier estimator (1958), defined as: 

�̂�(𝑡) = ∏ (1 −
𝑑𝑗

𝑛𝑗

)                                                         
𝑗:𝑡𝑗<𝑡

 (1) 

where  𝑑𝑗 is the number of failures in 𝑡𝑗, j = 1, 2, ..., r, r 

distinct times, and  𝑛𝑗 is the number of individuals at 

risk in 𝑡𝑗 (Geskus, 2015; Carvalho et al., 2011; Colo-

simo & Giolo, 2006). 

Alternatively, we estimated the total probability 
of occurrence of an injury by estimating the incidence 
function, given by the sum of incidences for each type 
of event. The total incidence is given by the expres-
sion: 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) =

= ∑ 𝑃(𝑇 ≤ 𝑡, 𝜀 = 𝑘) =                  

2

𝑘=1

= 𝐹1(𝑡) + 𝐹2(𝑡)                                     (2) 

in which 𝑘 is the event type, 𝑘 = 1, 2, where 𝑘 = 1 
refers to the main event and 𝑘 = 2 corresponds to the 
competing event; 𝐹1(𝑡) and 𝐹2(𝑡) are, respectively, the 
probabilities of claudication and injury due to other 
causes, and are estimated by: 

 �̂�𝑘(𝑡) = ∑
𝑑𝑖𝑗

𝑛𝑗

�̂�(𝑡𝑗−1)                                                 
∀𝑗,𝑡𝑗<𝑡

 (3) 

wherein, 𝑘 = 1, 2, 𝑑𝑖𝑗  represents the number of animals 

that experienced event k at time 𝑡𝑗, 𝑛𝑗 is the number of 

animals at risk at time 𝑡𝑗, and �̂�(𝑡𝑗−1) is the event-free 

survival at time 𝑡𝑗−1, obtained as described in (1) 

(Pintilie, 2006). 

The incidence of each event, �̂�𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡,
𝜀 = 𝑘), was estimated in two distinct ways. In the first 

one, �̂�𝑘(𝑡) was obtained as the complement of the 
Kaplan-Meier estimator for event k, that is,         

�̂�𝑘(𝑡) = 1 − 𝐾𝑀𝑘, where 𝐾𝑀𝑘 is the Kaplan-Meier 
estimator for the kth event, given by expression (1), 
obtained by considering the event distinct from k as 
censoring. The second way of obtaining the probability 

of experiencing the kth event, �̂�𝑘(𝑡)   =  𝑃(𝑇 ≤ 𝑡, 𝜀 =
 = 𝑘), was based on the incidence function approach 
when competing risks are present, as presented in 
expression (3). Then, two different regression models 
were fitted: the Cox model for cause-specific hazard 
and the Fine and Gray model for subdistribution 
hazard. 
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The semiparametric Cox proportional hazards 

model fitted for cause-specific hazard for each type of 

event is given by: 

 𝜆𝑘(𝑡|𝑍) = 𝜆𝑘,0 exp(𝛽𝑘
𝑇𝑍𝑖)                                                  (4) 

wherein, 𝛽𝑘 is the p x 1 vector of regression 

coefficients, 𝑍𝑖 is the p x 1 vector of covariates, and 

𝜆𝑘,0 is the baseline hazard function for cause 𝑘, 

nonnegative and unspecified (Geskus, 2015; Crowder, 

2001). 

The model of hazards proportional to the sub-

distribution hazards proposed by Fine & Gray (1999) 

can be written as: 

  𝛾𝑘(𝑡|𝑍) = 𝛾𝑘0 exp(𝛽𝑘
𝑇𝑍𝑖)                                                  (5) 

wherein, 𝛽𝑘 is the p x 1 vector of regression 

coefficients, 𝑍𝑖 is the p x 1 vector of covariates, and 

𝛾𝑘,0 is the baseline hazard subdistribution for cause 𝑘, 

nonnegative and unspeciied. 

The covariates that had their effects evaluated 
were: sex (1 for female and 2 for male); age (months); 
weight, categorical variable, defined as 1 if the weight 
of the animal is less than 480 kg and 2 if the weight of 
the animal is greater than or equal to 480 kg; training 
stations (number of training stations). Data were ana-
lyzed in R software (R Development Core Team, 
2016), using the survfit and coxph functions of the 
survival package and the cuminc and crr functions of 
the cmprsk package. 

 

Results and discussion 

 
Of the 158 horses in the study, 62 (39.2%) 

were female and 96 (60.8%) male. The age of the 

animals ranged from 25 months to 75 months, with 120 

animals (75.9%) in the range from 25 months to 36 

months, and 38 (24.1%) animals more than 36 months 

old. The mean age was 32.6 months. Sixty-seven 

animals (42.4%) weighed less than 480 kg, and ninety-

one (57.6%) weighed 480 kg or more. The number of 

training stations ranged from 1 to 6 stations, with a 

median value of 2. 

Cumulative incidence functions (CIF) for clau-

dication and other injuries are shown in Figure 1 along 

with the total incidence, i.e., incidence of any injury 

regardless of type. 
The total cumulative incidence, 1 − �̂�(𝑡), esti-

mated by the complement of the Kaplan-Meier function 
for injury-free survival is shown in Figure 1. This inci-
dence is equal to the sum of cumulative incidences for 
claudication and other types of injuries (Table 1). This 
analysis of the event of interest as a single type of 
failure event is correct, but limited to evaluate several 
important research questions (Kim, 2007). In this direc-
tion, the analysis of the combination of different causes 
of failure and the subsequent analysis as a single 
event responds to the questions related to the differ-
ences between groups and/or treatments considering 
the combination of event types, although not allowing 
to compare the cumulative incidence for the different 
types of events. 

 
Figure 1 - Cumulative incidence function for claudication, cumulative incidence function for other injuries and the 
Kaplan-Meier (KM) estimator for the incidence of all types of injuries (sum of the two incidence functions). 
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Table 1 - Estimated incidences for claudication (�̂�𝟏(𝒕)), for other injuries (�̂�𝟐(𝒕)), for the total incidence (�̂�(𝒕)) and 

for the calculated incidence based on the Kaplan-Meier estimator (𝟏 − 𝑺(𝒕)). 

Time 
(week) 

�̂�1(𝑡) �̂�2(𝑡) 𝐹(𝑡) = 𝐹1(𝑡) + 𝐹2(𝑡) 1 − �̂�(𝑡) 
 

Time 
(week) 

�̂�1(𝑡) �̂�2(𝑡) 𝐹(𝑡) = 𝐹1(𝑡) + 𝐹2(𝑡) 1 − �̂�(𝑡) 

1 0.0443 0.0063 0.0506 0.0506  82 0.2658 0.0823 0.3481 0.3481 

5 0.0443 0.0190 0.0633 0.0633  85 0.2722 0.0823 0.3544 0.3544 

6 0.0443 0.0253 0.0696 0.0696  86 0.2785 0.0823 0.3608 0.3608 

7 0.0570 0.0253 0.0823 0.0823  92 0.2848 0.0823 0.3671 0.3671 

8 0.0570 0.0316 0.0886 0.0886  98 0.2911 0.0823 0.3734 0.3734 

9 0.0696 0.0316 0.1013 0.1013  100 0.3038 0.0823 0.3861 0.3861 

10 0.0759 0.0316 0.1076 0.1076  103 0.3038 0.0886 0.3924 0.3924 

11 0.0823 0.0316 0.1139 0.1139  105 0.3291 0.0886 0.4177 0.4177 

12 0.0949 0.0380 0.1329 0.1329  106 0.3418 0.0886 0.4304 0.4304 

14 0.0949 0.0443 0.1392 0.1392  107 0.3608 0.0949 0.4557 0.4557 

16 0.1013 0.0443 0.1456 0.1456  109 0.3797 0.0949 0.4747 0.4747 

17 0.1203 0.0443 0.1646 0.1646  110 0.3861 0.0949 0.4810 0.4810 

18 0.1329 0.0443 0.1772 0.1772  111 0.4114 0.0949 0.5063 0.5063 

20 0.1392 0.0443 0.1835 0.1835  112 0.4177 0.0949 0.5127 0.5127 

21 0.1392 0.0506 0.1899 0.1899  113 0.4557 0.1076 0.5633 0.5633 

23 0.1456 0.0506 0.1962 0.1962  114 0.4620 0.1076 0.5696 0.5696 

28 0.1456 0.0570 0.2025 0.2025  116 0.4747 0.1076 0.5823 0.5823 

29 0.1519 0.0570 0.2089 0.2089  117 0.4747 0.1139 0.5886 0.5886 

34 0.1646 0.0570 0.2215 0.2215  118 0.4810 0.1203 0.6013 0.6013 

36 0.1709 0.0570 0.2278 0.2278  119 0.4873 0.1266 0.6139 0.6139 

37 0.1772 0.0633 0.2405 0.2405  121 0.5063 0.1392 0.6456 0.6456 

40 0.1835 0.0633 0.2468 0.2468  122 0.5127 0.1392 0.6519 0.6519 

45 0.1899 0.0633 0.2532 0.2532  123 0.5190 0.1392 0.6582 0.6582 

52 0.2025 0.0633 0.2658 0.2658  125 0.5253 0.1519 0.6772 0.6772 

54 0.2025 0.0633 0.2658 0.2658  127 0.5253 0.1582 0.6835 0.6835 

58 0.2152 0.0633 0.2785 0.2785  128 0.5316 0.1582 0.6899 0.6899 

59 0.2215 0.0633 0.2848 0.2848  130 0.5316 0.1646 0.6962 0.6962 

60 0.2278 0.0633 0.2911 0.2911  133 0.5380 0.1646 0.7025 0.7025 

61 0.2278 0.0696 0.2975 0.2975  135 0.5443 0.1709 0.7152 0.7152 

62 0.2278 0.0759 0.3038 0.3038  140 0.5506 0.1709 0.7215 0.7215 

63 0.2342 0.0759 0.3101 0.3101  141 0.5570 0.1709 0.7278 0.7278 

64 0.2405 0.0759 0.3165 0.3165  150 0.5633 0.1709 0.7342 0.7342 

68 0.2468 0.0759 0.3228 0.3228  151 0.5696 0.1709 0.7405 0.7405 

72 0.2532 0.0759 0.3291 0.3291  156 0.5696 0.1709 0.7405 0.7405 

76 0.2658 0.0759 0.3418 0.3418  - - - - - 

 
The sum of the Kaplan-Meier estimates for 

claudication and other injuries is greater than the esti-
mate of the total incidence, obtained by the sum of the 
two incidence functions (Figure 2). These curves illu-
strate the incorrect estimate of the total incidence when 
using the sum of Kaplan-Meier estimators of distinct 
events to estimate this function. 

The overestimation of CIF when using the sum 
of Kaplan-Meier estimates for different events is 

reported by Austin et al. (2016) in their study on causes 
of death (cardiovascular and noncardiovascular 
causes) in patients with cardiovascular disease. 

Figures 3 and 4 show, respectively, the inci-

dence probabilities for claudication and other injuries, 

obtained through the complement of the Kaplan-Meier 

estimator, and the estimates obtained based on the 

incidence function for each of the events. 
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Figure 2 - Total cumulative incidence function and incidence calculated by the sum of the estimates of the proba-
bility of claudication and other injuries obtained on the basis of the Kaplan-Meier estimator. 

 
Figure 3 - Cumulative incidence function for claudication and probability of claudication obtained on the basis of 
Kaplan-Meier estimates. 
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Figure 4 - Cumulative incidence function for other injuries and probability of other injuries obtained based on 
Kaplan-Meier estimates. 

 
The probability curves obtained based on the 

Kaplan-Meier estimator for both events are equal to or 
greater than the estimates obtained from the cumula-
tive incidence function. Hence, there is also an overes-
timation of the incidences for each type of event, and 
the bias increases with animal follow-up time. 

 Assane et al. (2015) also highlighted the limita-
tions of the classic Kaplan-Meier estimator when 
applied to estimate the incidence of different types of 
events (nonfatal cardiovascular event, death due to 
cardiovascular causes, death due to another cause) in 
patients with arterial hypertension. According to the 
aforementioned authors, the probability of failure for an 
event of interest estimated using the Kaplan-Meier 
estimator is equal to or greater than the probability 
estimated based on the cumulative incidence function. 
These authors, as well as Berry et al. (2010), also em-
phasized that the magnitude of the bias increases with 
increased patient follow-up time, which agrees with the 
results found in this study. The bias is a consequence 
of both the treatment of competing events as censors 
and the estimation of the incidence of the event of 
interest based on the Kaplan-Meier estimator. When 
estimating incidence using this procedure, the 
assumption underlying the Kaplan-Meier estimator is 
violated: the independence between the event time 
and the censoring distribution (Putter et al., 2007). 

In the calculation used for the Kaplan-Meier 

estimator, censoring the event time of an individual 

indicates that the subject has not yet experienced the 

event of interest until the censoring time, but may 

experience this event at a later time, unobservable 

(Wolbers et al., 2014). Consequently, censored indi-

viduals can be represented by those who remain under 

observation; thus, the risk is equal for censored indi-

viduals and for those who remained under observation 

(Putter et al., 2007). 

However, in the competing risk structure, indi-

viduals who experience a competing event have never 

experienced the event of interest as the first event 

(Wolbers et al., 2014). Individuals who did not fail due 

to the event of interest are treated as if they could still 

experience this type of event, i.e., they are censored; 

thus, the Kaplan-Meier estimator eventually overesti-

mates the likelihood of failure (Putter et al., 2007). 

The impact of the incorrect treatment of com-

peting events as censored events is of practical 

importance, since, in general, the greater the percen-

tage of competing events the greater the bias (Austin 

et al., 2016; Wolbers et al., 2014). 

The results of this work point out that the esti-

mates of the cumulative incidence functions for the two 

considered events, claudication and other injuries, 

based on the Kaplan-Meier estimator, that is, ignoring 

the competitive risk structure, were biased, which cor-

roborates the results found in the literature (Logan et 

al., 2006; Kim, 2007; Putter et al., 2007; Andersen et 

al., 2012). 

The results of the regression models for 

cause-specific hazard and for subdistribution hazard 

are presented in Table 2. 
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Table 2 – Estimates obtained for the Fine and Gray regression models for the cumulative incidence function for 
the claudication event and for the event other injuries and estimates obtained for the Cox regression model for the 
cause-specific hazard of claudication and for the cause-specific hazard for other injuries. 

Covariable 

Fine and Gray Model for Subdistribution 
hazard 

Cox model for cause-specific hazard 

Event: claudication 

p-Value SHR (I.C 95%) p-Value CHR (I.C 95%) 

Sex 0.4236ns 1.2114 [0.7553; 1.9378] 0.6732ns 1.1052 [0.6943; 1.7593] 
Age 0.0146* 0.9479 [0.9081; 0.9895] 0.0062* 0.9485 [0.9133; 0.9851] 
Weight 0.3523ns 1.2408 [0.7875; 1.9549] 0.2932ns 1.2736 [0.8133; 1.9992] 
Season 0.0006* 1.3868 [1.1501; 1.6723] <0.0001* 1.4564 [1.2261; 1.7299] 

Covariable 
Event: other injuries 

p-Value SHR (I.C 95%) p-Value CHR (I.C 95%) 

Sex 0.3902ns 0.6951 [0.3033; 1.5934] 0.3350ns 0.6706 [0.2976; 1.5109] 
Age 0.5982ns 1.0133 [0.9648;1.0642] 0.9856ns 1.0004 [0.9560; 1.0469] 
Weight 0.7514ns 1.1411 [0.5042; 2.5823] 0.5148ns 1.3091 [0.5821; 2.9438] 
Season 0.5571ns 1.1113 [0.7813; 1.5808] 0.0519ns 1.3888 [0.9973; 1.9340] 

CHR: cause-specific hazard ratio. SHR: subdistribution hazard ratio. I.C 95%: 95% confidence interval for the hazard 
ratios and the subdistribution hazard ratio. * significant to 5%. ns: not significant. 
 

Regarding the event of other injuries, none of 
the studied covariates significantly affects the inci-
dence and the cause-specific hazard. For claudication, 
in turn, the increase in age significantly decreases the 
probability of incidence of claudication (SHR = 0.9479; 
p-value = 0.0146) and the cause-specific hazard (CHR 
= 0.9485, p-value = 0.0062) for claudication, that is, the 
risk of claudication when the risk of the competing 
event (“other injuries”) is not considered. 

Descriptive studies on training-related muscu-
loskeletal injuries report that injury rates vary between 
age groups, with the highest levels being reported in 
two-year-old animals (Lindner & Dingerkus, 1993). 
Notwithstanding, caution is advised in interpreting the 
results of these studies, as they may be influenced by 
confounding factors, such as exposure to training and 
running, which may influence the relationship between 
age and risk of injury (Cogger et al., 2006). The cova-
riate stations significantly increased the incidence 
(SHR = 1.3868, p-value = 0.0006) and the cause-spe-
cific hazard (CHR = 1.4565, p-value < 0.0001) for 
claudication, with no significant effect for other injuries. 

When competing risks were present, the effect 
of covariates on the cause-specific hazard and subdi-
stribution hazard would be generally different and 
opposite. However, in a situation where there is an 
effect that decreases (or increases) the cause-specific 
hazard of the event of interest, with no significant effect 
on the cause-specific hazard of the competing event, 
there would be a decrease (or increase) in the inci-
dence of the event of interest (Beyersmann et al., 
2012). This behavior was verified for the covariates 
age and stations. 

Regarding the differences in the significance of 
the effect of covariates on the cause-specific hazard, 
Bimali & He (2015), in their study on the association 
between obesity and cancer risk, found a statistically 
significant higher cause-specific hazard for the obese 
population. Notwithstanding, the incidence of cancer 
was not statistically higher in this population. According 

to the authors, a statistically higher cause-specific 
hazard does not mean a high incidence rate of this 
event. Thus, the influence of covariates on the cause-
specific hazard may differ from the influence on the 
probability of occurrence of an event (Gillam et al., 
2011). 

Generally, the relationship between covariates 
and the cause-specific hazard cannot be translated 
into a direct relationship with the subdistribution hazard 
(Andersen et al., 2012). Nevertheless, the increase 
and decrease of the cause-specific hazard was trans-
lated into the subdistribution hazard. An explanation for 
this fact is found on the aforementioned argument of 
Beyersmann et al. (2012). 
 

Conclusions 

 
The incidences for claudication and other inju-

ries obtained based on the Kaplan-Meier estimator 
overestimated the cumulative incidence functions for 
the respective events. The total incidence obtained by 
the sum of incidences for each of the events, derived 
from the Kaplan-Meier estimator, was biased. 

The evaluated covariates have equally 
affected (increasing or decreasing) the subdistribution 
hazard, that is, the cumulative incidence function and 
the cause-specific hazard for the claudication event. 
This was due to these covariates having no effect on 
the competing event. 

The approach based on standard survival 
analysis when competing events are present was 
inadequate. The competing risk approach was shown 
to be a more appropriate alternative. 
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