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Abstract 

Genetic diversity analysis has guided the choice of appropriate parents in breeding programs. Multivariate statisti-
cal methods such as discriminant analysis are used to obtain the necessary results in these studies. However, to 
obtain reliable results, one must meet assumptions such as covariance matrix heterogeneity and multivariate 
normality of the observation vector. Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision 
Tree (DT) and its refinements do not have these assumptions and may be used in the choice of appropriate par-
ents. This study evaluates the robustness of the Fisher’s discriminant function under covariance matrix heteroge-
neity and multivariate non-normal random vectors. The results were compared with those obtained from 
Quadratic Discriminant Analysis (QDA), ANN, SVM and DT. Scenarios characterized by heterogeneous 
covariance matrices and multivariate non-normal random vectors were simulated. Considering the apparent error 
rate (APER), the SVM method (APER-Normal = 0.07; APER-Poisson = 0.13) and quadratic discriminant method 
(APER-Normal = 0.09; APER-Poisson = 0.09) presented better results for scenarios simulated with covariance 
matrix heteroscedasticity. For scenarios with multivariate normality and covariance matrix homoscedasticity, the 
SVM (APER = 0.15) and ANN (APER = 0.06) presented best results. For situations in which the data had multi-
variate Poisson distribution and covariance matrix homogeneity, the SVM (APER = 0.15), Fisher’s discriminant 
function (APER = 0.19) and ANN (APER = 0.19) presented better performances. Finally, DT refinements 
(Bagging, Random Forest and Boosting) presented APER values less than 0.25 and are shown to be alternatives.  

Additional Keywords: quadratic discriminant function; multivariate analysis, simulation. 
 
Resumo 

Análises de diversidade genética têm orientado a escolha de genitores apropriados em programas de melhora-
mento. Métodos de Estatística Multivariada, como por exemplo, as análises discriminantes são utilizadas para 
obtenção dos resultados necessários nesses estudos. Entretanto, a obtenção de resultados confiáveis está 
associada ao atendimento de pressupostos, como por exemplo a heterogeneidade de matrizes de covariância e 
normalidade multivariada do vetor de observações. Redes Neurais Artificiais (RNA), Máquina de Vetor Suporte 
(MVS), Árvores de Decisão (AD) e seus refinamentos, não possuem pressupostos e podem ser utilizadas para 
esse fim. O objetivo desse trabalho foi avaliar a robustez da função discriminante de Fisher na presença de 
matrizes de covariâncias heterogêneas e vetores aleatórios não normais multivariados. Os resultados foram 
comparados com aqueles provenientes da função discriminante quadrática (FDQ), RNA, MVS e AD. Foram 
simulados cenários caracterizados por matrizes de covariâncias heterogêneas e vetores aleatórios não normais 
multivariados. Considerando a Taxa de Erro Aparente média (TEA) a MVS (TEA–Normal=0,07; TEA–
Poisson=0,13) e FDQ (TEA–Normal=0,09; TEA–Poisson=0,09) apresentaram melhores resultados para os 
simulados considerando heterocedasticidade de matrizes de covariância. Para os cenários com normalidade 
multivariada e homocedasticidade de matrizes de covariâncias a MVS (TEA=0,15) e RNA (TEA=0,06) apresenta-
ram os melhores resultados. Já para as situações em que os dados apresentaram distribuição Poisson multivari-
ada e homogeneidade de matrizes de covariância, a MVS (TEA=0,15), Função Discriminante de Fisher 
(TEA=0,19) e RNA (TEA=0,19) apresentaram melhores performances. Finalmente, os refinamentos da AD 
(Bagging, Random Forest e Boosting) apresentaram valores TEA inferiores a 0,25 e se apresentam como 
alternativas.  
 
Palavras-chave adicionais: análise multivariada; função discriminante quadrática; simulação. 
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Introduction 

 
Genetic diversity analysis has guided the 

choice of appropriate parents in breeding programs, 
leading to hybrids with higher heterosis and popula-
tions with greater variability. Moreover, such analysis 
allows quantification of the existing variability, facilitat-
ing the management of germplasm banks (Sant'Anna, 
2015). 

Currently, the literature presents several 
methods for quantification and evaluation of genetic 
diversity in population studies. In general, methods 
from Multivariate Statistics have been an effective 
alternative in these studies; for example, methods 
based on cluster analysis (Santos et al., 2017b; 
Rodrigues et al., 2017) and discriminant analysis 
(Santos et al., 2017a). However, to obtain reliable 
results, one must meet the assumptions of the method 
to be applied, which must be chosen according to the 
characteristics of the information set available and the 
objectives established by the researcher. 

Clustering methods usually do not require data 
structure assumptions and generally involve hierar-
chical procedures, optimization analysis or graphical 
dispersion. The choice of the most appropriate method 
is not a simple task and, even within a class of analysis 
such as hierarchical clustering, one must choose 
carefully because different techniques use different 
statistical and biological concepts. Notwithstanding, in 
some cases, the choice of one of these methods is 
simply guided by measures such as the cophenetic 
correlation coefficient (Sokal & Rohlf, 1962). 

In genetic diversity studies using discriminant 
analysis, various analysis options must also be consid-
ered so as to take advantage of the potentiality of 
each. Among these techniques, the linear discriminant 
functions of Anderson and Fisher deserve special 
mention. However, the use of linear discriminant func-
tions (Fisher, 1936) requires homogeneous covariance 
matrices between populations (Ferreira, 2008) and, in 
some cases, multivariate normal distribution of the 
random vector. If the equality hypothesis is rejected, 
quadratic functions are recommended (Mingoti, 2007). 
Furthermore, if normality is not achieved, strategies 
such as data transformation are suggested. Despite 
these indications, the literature does not present stud-
ies evaluating the robustness of the technique regard-
ing the breakdown of such assumptions. Moreover, 
studies without in-depth analysis make use of linear 
functions without specifying any criterion that has led to 
such a choice. 

The literature also presents other methods that 
can be used to discriminate populations and do not 
require assumptions on covariance matrix heterogene-
ity and multivariate normality. Such methods, namely 
Artificial Neural Networks, Support Vector Machine, 
Decision Tree and its refinements are based on com-
puter intelligence and statistical learning. They have 
been used in improvements to solve several problems. 
Nascimento et al. (2013) used artificial neural networks 

to classify alfalfa genotypes for phenotypic adaptability 
and stability. Sant'Anna et al. (2015) showed the supe-
riority of neural networks in relation to discriminant 
analysis in genetic classification studies considering 
populations coming from backcrossings. Silva et al. 
(2017) carried out genomic prediction for orange rust 
resistance in arabica coffee by means of artificial neu-
ral networks. Despite the existence of these methods, 
there are no studies evaluating whether heterogene-
ous covariance matrices and normality affect the effi-
ciencies thereof. 

Considering the above, this study evaluates, 
through data simulation, the robustness of the linear 
discriminant function regarding the lack of homogeneity 
of covariance matrices and the presence of multivari-
ate non-normal random vectors. These evaluations 
aim to guide researchers as to the appropriate method 
to be used in genetic diversity studies. The results will 
be compared with those from other methods com-
monly used for this purpose, such as quadratic discri-
minant analysis, Artificial Neural Networks, Support 
Vector Machine and Decision Tree. 

 
Material and methods 

 
Simulated Dataset 

To evaluate the robustness of the discriminant 
function regarding covariance matrix heterogeneity and 
non-normal random vectors, datasets with different 
covariance structures and multivariate probability dis-
tribution were simulated. Method performance was 
evaluated considering two populations (A and B) and 
sample size n = 100. The number of variables (p) was 
established as p = 5, and the covariance matrix struc-
tures (𝜮) were defined as follows. 

𝜮𝐴 = [
1 ⋯ 0.9
⋮ ⋱ ⋮

0.9 ⋯ 1

]  and 𝜮𝐵 = [
1 ⋯ 0.1
⋮ ⋱ ⋮

0.1 ⋯ 1

];                        (1) 

𝜮𝐴 = [
1 ⋯ 0.9
⋮ ⋱ ⋮

0.9 ⋯ 1

] and  𝜮𝐵 = [
1 ⋯ 0.5
⋮ ⋱ ⋮

0.5 ⋯ 1

] ;                           (2) 

𝜮𝐴 = [
1 ⋯ 0.9
⋮ ⋱ ⋮

0.9 ⋯ 1

] and 𝜮𝐵 = [
1 ⋯ 0.9
⋮ ⋱ ⋮

0.9 ⋯ 1

] ;                            (3) 

𝜮𝐴 = [
1 ⋯ 0.1
⋮ ⋱ ⋮

0.1 ⋯ 1

] and 𝜮𝐵 = [
1 ⋯ 0.1
⋮ ⋱ ⋮

0.1 ⋯ 1

]                             (4) 

For the multivariate normal distribution, the 
parametric values of the mean vectors were consid-
ered as 𝝁𝐴 = [0 ⋯ 0]𝑇 and 𝝁𝐵 = [𝑖 ⋯ 𝑖]𝑇, 
where i = 0.5, 1, 2 and 3. On the other hand, for the 
parametric vectors of the multivariate Poisson distribu-
tion, we considered 𝝀𝐴 = [1 ⋯ 1]𝑇 and  𝝀𝐵 =
[𝑗 ⋯ 𝑗]𝑇, where the mean values differ for j = 0.5, 2, 
3 and 4. The difference between the means vectors 
aims to represent different levels of discrimination con-
sidering 0.5, 1, 2 and 3 standard deviations. The com-
bination of different structures of covariance and prob-
ability distribution results in 32 distinct scenarios 
(Table1). 
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Table 1 - Scenarios evaluated for the robustness of the linear discriminant function regarding the lack of ho-
mogeneity of covariance matrices and the presence of random vectors not multivariate normal. 

Scenario 
Multivariated 
distribution 

Structure of the 
covariance 

Differences between mean vectors in standard 
deviations 

1 

Normal 

(1) 0.5 

2 (1) 1.0 

3 (1) 2.0 

4 (1) 3.0 

5 (2) 0.5 

6 (2) 1.0 

7 (2) 2.0 

8 (2) 3.0 

9 (3) 0.5 

10 (3) 1.0 

11 (3) 2.0 

12 (3) 3.0 

13 (4) 0.5 

14 (4) 1.0 

15 (4) 2.0 

16 (4) 3.0 

17 

Poisson 

(1) 0.5 

18 (1) 1.0 

19 (1) 2.0 

20 (1) 3.0 

21 (2) 0.5 

22 (2) 1.0 

23 (2) 2.0 

24 (2) 3.0 

25 (3) 0.5 

26 (3) 1.0 

27 (3) 2.0 

28 (3) 3.0 

29 (4) 0.5 

30 (4) 1.0 

31 (4) 2.0 

32 (4) 3.0 

 
Specifically, simulated scenarios considering 

covariance matrices defined in (1) and (2) represent 
situations in which the covariance matrices are hetero-
geneous. Simulated scenarios considering structures 
(3) and (4) represent situations in which the covariance 
matrices are homogeneous. The combination of these 
covariance structures with the different multivariate 
probability distributions and degrees of discrimination, 
as a function of the parametric vectors, compose the 
whole set of simulated scenarios. To guarantee heter-
ogeneity among covariance matrices, the hypothesis 
𝐻0: 𝛴𝐴 = 𝛴𝐵 was evaluated by means of Box's M statis-
tics (Morrison, 1976), derived from the likelihood ratio 
test. The whole simulation process was repeated 25 
times. 

 
Linear and Quadratic Discriminant Analysis 

Consider the case where there are p > 1 vari-
ables measured in each sampling element of each 
population and coming from p-variate normal distribu-

tions. Assume that for population A, vector 𝑿 is normal 
with mean vector 𝝁𝐴 and covariance matrix 𝜮𝐴; and for 
population B, 𝑿 is normal with mean vector 𝝁𝐵 and 
covariance matrix 𝜮𝐵. For a fixed observation vector 
𝒙𝑇 = [𝑥1𝑥2 … 𝑥𝑝], the ratio between the probability 

density functions of the two populations, in terms of 
neperian logarithm, will be: 

 

−2 ln(𝜆(𝑥)) = −2𝑙𝑛 {
(2𝜋)

𝑝
2(|𝛴𝐴|

1
2)

−1

(2𝜋)
𝑝
2(|𝛴𝐵|

1
2)

−1 [
𝑒𝑥𝑝{−

1

2
(𝑥−𝜇𝐴)′𝛴𝐴

′(𝑥−𝜇𝐴)}

𝑒𝑥𝑝{−
1

2
(𝑥−𝜇𝐵)′𝛴𝐵

′(𝑥−𝜇𝐵)}
]}  (5) 

 
Thus, a sampling element with observation 

vector 𝒙 will be classified as belonging to population 1 

when −2 ln(𝜆(𝒙)) is greater than zero; and to popula-

tion 2, when less than zero. If −2 ln(𝜆(𝒙)) = 0, the 

sampling element can be classified in any of the two 
populations. If 𝜮𝐴 ≠ 𝜮𝐵, this function is called a quad-
ratic discriminant function (Mingoti, 2007). 

When matrices 𝛴𝐴 and 𝛴𝐵  are homogeneous, 
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the function becomes equivalent to "Fisher's linear 
discriminant function" (Fisher, 1936), which is 
expressed as: 

𝑓(𝑥) = (𝜇𝐴 − 𝜇𝐵)′𝛴−1𝑥 −
1

2
(𝜇𝐴 − 𝜇𝐵)′𝛴−1(𝜇𝐴 + 𝜇𝐵) (6) 

wherein 𝛴−1 is the inverse of the covariance matrix of 
the two populations, estimated by: 

𝑆𝑝 = [
𝑛𝐴 − 1

(𝑛𝐴 − 1) + (𝑛𝐵 − 1)
] 𝑆1 + [

𝑛𝐵 − 1

(𝑛𝐴 − 1) + (𝑛𝐵 − 1)
] 𝑆2 (7) 

. 
In this case, an individual will be classified as 

belonging to population 1 if f(x) is greater than zero, 

and to population 2 if f(x) is less than zero. If f(x) = 0, 
the sampling element can be classified into any of the 
two populations. 

 
Artificial Neural Networks 

An Artificial Neural Network (ANN) is formed 
by the combination of several artificial neurons, which 
are a logical structure that try to simulate the behavior 
and functions of a biological neuron. ANNs are usually 
structured into three layers: input, intermediate and 
output layers (Figure 1). 

 

Figure 1 - Representation of existing layers in a model of Artificial Neural Networks (variables Xi in which i=1, 2, 3, 

4, 5) and two outputs (Y1 and Y2). 
 
In this study, we used a feed-forward network, 

which assumes that the output of any layer is not 

affected in that layer, i.e., there is no feedback. The 

input layer is fed by phenotypic values (simulated 

according to scenarios 1 to 24, already described), 

which will be used for diversity analysis. In other words, 

a dataset consisting of n = 100 individuals (accessions, 

genotypes, etc.) measured in p = 5 characters. The 

input layer is connected to the hidden layer, composed 

of T neurons (T ranging from 1 to 40) that are 

connected to the output layer, composed of a single 

neuron. These connections are directed by means of 

estimated weights, which measure the influence of the 

predictor variables on the response variable. In addi-

tion to weights, the bias (𝑏𝑡), also known as intercept, 

is estimated (Glória et al., 2016). 

Mathematically, in the ith intermediate layer, 

the jth neuron is formed by the weight vector, 𝑤𝑖𝑗
𝑇 , 

added to the intercept. The resulting linear combination 

is then transformed by means of an activation function 

f(.), generating the output of said neuron,                  

𝑎𝑖
𝑇 = f(∑ 𝑤𝑖𝑗

𝑇 𝑥𝑖𝑗
5
𝑗=1 ) + 𝑏𝑡. The activation function can 

be linear or nonlinear. For complex problems, however, 

Bishop (2006) state that nonlinear activation functions 

provide better results when compared to linear func-

tions. In the last layer, considering, without loss of gen-

erality, an ANN with only one hidden layer, all outputs 

from the neurons that make up the intermediate layers 

are inputs in a new linear combination, which is again 

transformed by an activation function g(.). Thus, the 

ANN output, 𝑦𝑖, depends on a new weight vector and a 

scalar bias: 

𝑦𝑖 = g [∑ 𝑤2𝑡

𝑇

𝑗=1

f (∑ 𝑤1𝑗
𝑇 𝑥𝑖𝑗

5

𝑗=1

+ 𝑏𝑡) + 𝑏] (8) 

In this study, we considered ANNs with one 

and two hidden layers, with Sigmoidal Tangent Hyper-

bolic and Logarithmic Sigmoid activation function. The 

number of neurons (T) ranged from 1 to 40, and the 

number of iterations was set at 100000. 

X5

X4

X3

X2

X1

Y2

Y1
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Support Vector Machine 

Support Vector Machine (SVM) (Lorena & 
Carvalho, 2007) is based on the theory of statistical 
learning, which aims to establish mathematical condi-
tions that allow us to choose a classifier with good 
performance for the available dataset. The main idea 
of SVM is to create a separation hyperplane as deci-
sion surface, so that the separation between its posi-
tive and negative examples is maximal (Campbell, 
2000; Lorena & Carvalho, 2007). 

Mathematically, a hyperplane can be written 
as follows: 

𝑤 ∙ 𝑥 + 𝑏 = 0, (9) 

wherein 𝑤 is the adjustable weight vector; and b, as in 
ANN, is the bias term. From this equation, we divide 
the observation space X into two regions: 𝑤 ∙ 𝑥𝑖 + 𝑏 >
0 and 𝑤 ∙ 𝑥𝑖 + 𝑏 < 0 so that 𝑔(𝑥) = 𝑠𝑔𝑛(𝑤 ∙ 𝑥 + 𝑏). 
Thus, the classification will be +1 if 𝑓(𝑥) > 0; and -1 if 
𝑓(𝑥) < 0 (Lorena & Carvalho, 2007) (Figure 2). 

 

 
Figure 2 - Illustration of a data set linearly separable 
and the distance d between hyperplanes w · x1 + b = 

-1 and w · x2 + b = +1. Fonte: Lorena & Carvalho, 
2007. 

 
To deal with situations where the data cannot 

be satisfactorily divided by a linear hyperplane, the 
training sets are mapped to a new space with a greater 
dimensionality, obtaining a linear solution for the prob-
lem. However, an appropriate mapping function 𝜙 
must be chosen. This can be done by simply applying 
the mapping function to each standard in equation 
f(𝑥) = 𝑤 ∙ 𝜙(𝑥) + 𝑏. Through this procedure, the infor-
mation needed for mapping the function is defined by 

the internal product 𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑗). This product is 

obtained by introducing the Kernels concept (Lorena & 
Carvalho, 2007), which comprise functions that receive 
two points from the input space, 𝑥𝑖 and 𝑥𝑗, and com-

pute the scalar product 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑗) in the 

feature space (Haykin, 1999). In practice, the most 
commonly used kernels are the Polynomials, RBF 
(Radial-Basis Function) and the Sigmoidal. 

Another way to deal with data nonlinearity is to 
implement a smoothing constant (C), which determines 
the stiffness of the separation margin (Lorena & 
Carvalho, 2007). In this study, we used the Kernel RBF 
function (Shanthini et al., 2017), given by:  

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
) (10) 

Such function depends only on one parame-
ter, sigma (𝜎), usually defined as the standard devia-
tion of a Gaussian distribution. The search space of the 

sigma parameter was defined as 0.001 ≤
1

2𝜎2 ≤ 2 ; and 

the smoothing constant (C) had a search space of 10𝑖, 
with i = 0, 1, 2 and 3. 

 
Decision Tree and its Refinements 

To construct the decision tree, regions R1, 
R2,..., RM are aimed, which minimize the Gini index, 
given by (James et al., 2013): 

𝐺 = ∑ �̂�𝑚𝑘(1 −

𝐾

𝑘=1

�̂�𝑚𝑘), (11) 

wherein �̂�𝑚𝑘 represents the proportion of observations 
in the mth region belonging to the kth class. The Gini 
index decreases according to the growth of the tree, 
which occurs through recursive binary division. To 
avoid the overfitting, cost-complexity pruning is indi-
cated (Hastie et al., 2009). In addition, no region 
should contain more than 5 individuals. 

The construction of a single tree is not an indi-
cated strategy, since this approach presents models 
with great variability. To circumvent the problem, the 
literature suggests the use of bootstrap aggregation 
(Bagging). Bagging consists of obtaining B samples 
with replacement (size equal to N) of the dataset, thus 

fitting B models [𝑓1(𝑥), 𝑓2(𝑥),..., 𝑓𝐵(𝑥)] to be used as 
individual classifiers. A new individual will be ranked in 
the most common class among the predictions of indi-
vidual B classifiers. Another approach that aims to 
increase accuracy in the classification of individuals is 
Random Forest (RF). In this procedure, in the same 
way as in bagging, B samples are drawn from the pop-
ulation. Notwithstanding, the number of predictor vari-
ables used in each partition is less than the total num-
ber of available variables (m<p). According to James et 
al. (2013), RF results in a process of decorrelating the 
generated trees, further improving the accuracy of the 
predictions. 

Another refinement used to improve the deci-
sion tree result is Boosting. Unlike Bagging, which 
creates multiple independent trees, Boosting creates 
trees sequentially, using information from previous 
trees. The Boosting classifier has the form 𝑯(𝒙) =
 ∑ 𝛼𝑡𝒉𝒕(𝒙)𝑡 , which seeks to minimize a loss function 𝐿 
by optimizing the scalar 𝛼𝑡 (importance assigned to 
𝒉𝒕(𝒙)) and the individual classifier 𝒉𝒕(𝒙) (individual 
decision tree) at each iteration 𝑡 (Freund & Schapire, 
1999). Individual classifiers 𝒉𝒕(𝒙) have low classifica-
tory power, but when used together with 𝑯(𝒙), they 
present good results (Appel et al., 2013). 
 
Comparison of Methods 

To access the predictive ability of the evalu-
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ated methods, the Apparent Error Rate (APER) was 
calculated according to the following expression: 

𝐴𝑃𝐸𝑅(%) =
1

𝑁
∑ 𝑚𝑗 ,

𝑘

𝑗=1

 (12) 

wherein 𝑚𝑗  is the number of observations taken from a 

population, which by means of the evaluated technique 
was classified into another population. N is the total 
number of observations evaluated; and 𝑘 is the num-
ber of populations considered. These values were 
obtained through a procedure considering 80% of the 
dataset for adjustment/training, and the remaining 20% 
for validation. The final APER value is given by the 
mean value obtained in the 25 replicates. 
 
Computational Aspects 

The entire process of population simulation 
and adjustment/training of the models was conducted 
using R software (R Development Core Team, 2017). 
Samples of the multivariate normal and Poisson distri-
butions were obtained using the functions mvrnorm 
and gen.PoisBinOrd of the MASS (Venables & Ripley, 

2002) and PoisBinOrd (Inan & Demitras, 2016) pack-
ages, respectively. The linear and quadratic discrimi-
nant functions, Neural Networks, Support Vector 
Machine, Tree, Bagging/Random Forest and Boosting 
were adjusted through the functions lda, qda, 
neuralnet, ksvm, tree, randomForest and gbm of the 
MASS, kernlab (Karatzoglou et al., 2004), neuralnet 
(Fritsch & Guenther, 2016) and tree (Ripley, 2016) 
packages, respectively. 

 
Results and discussion 

 
The homogeneity of variances was tested by 

means of the likelihood ratio test for all simulated sce-
narios and replicates from the multivariate normal 
distribution. As results, the hypothesis of homogeneity 
(P ≤ 0.01) was rejected in cases where matrices were 
simulated as heterogeneous, the opposite occurring in 
the other cases (P > 0.01). Since the Box-M test 
assumes the multivariate normality of the observation 
vector, the results presented refer to scenarios in which 
the multivariate normal distribution was used to gener-
ate data (Table 2). 

 
Table 2 - Average P-values associated with a Box’M test. 

Scenario Multivariated  distribution Structure of covariance p-valor 

1 

Normal 

(1) 0.0001 

2 (1) 0.0001 

3 (1) 0.0001 

4 (1) 0.0001 

5 (2) 0.0001 

6 (2) 0.0001 

7 (2) 0.0001 

8 (2) 0.0001 

9 (3) 0.7782 

10 (3) 0.8551 

11 (3) 0.9186 

12 (3) 0.8667 

13 (4) 0.7132 

14 (4) 0.2574 

15 (4) 0.5422 

16 (4) 0.4995 

 
The APER values obtained for all the evalu-

ated methods ranged from 0.00 to 0.47 (Table 3). In 
general, for scenarios that consider the heterogeneity 
of covariance matrices and multivariate normality 
(Scenarios 1, 2, 3, 4, 5, 6, 7 and 8), the Quadratic Dis-
criminant Analysis (QDA) and Support Vector Machine 
(SVM) presented lower mean values of APER (APER - 
QDA = 0.07 and APER - SVM = 0.09) compared to the 
other approaches evaluated. Specifically considering 
QDA, such scenarios represent ideal situations for the 
application of this method, since it requires that the 
covariance matrices are heterogeneous and that the 
random vector has a multivariate normal distribution 
(Ferreira, 2008). 

Unlike QDA, SVMs do not have an assump-

tion regarding data distribution and covariance matri-
ces. SVMs have as principle to partition the points into 
predefined classes to maximize both the margin given 
by the support vectors and the separation hyperplane 
(Bridges et al., 2011). The other approaches, which 
also have no assumptions about the distribution of 
random vectors, presented mean APER values rang-
ing from 0.12 (ANN with one hidden layer and Random 
Forest) to 0.23 (Fisher's linear discriminant function - 
FLD). The lowest performance of FLD for the 
classification, in terms of mean APER, can be 
attributed to the construction of the method, which 
requires that the covariance matrices are homogene-
ous (Ferreira, 2008). These results are expected since 
the QDA and other methods evaluated lead to 
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nonlinear decision thresholds (Zhang et., 2000). Thus, 
the greater the heterogeneity of covariance matrices, 
the more nonlinear the classification thresholds and the 
better the methods that model this structure. 

On the other hand, for scenarios that encom-
pass situations in which the dataset was simulated 
considering multivariate normality of the random vector 
and homoscedasticity of the covariance matrices (Sce-
narios 9, 10, 11, 12, 13, 14, 15 and 16), the ANN with 
two hidden layers presented a lower mean APER 

(0.06) compared to the other methods evaluated, 
which ranged from 0.15 (SVM) to 0.24 (Decision Trees 
- Tree). FLD presented a reasonable performance 
(APER = 0.13), obtaining APER values close to (APER 
- Neural Networks with one hidden layer = 0.12, APER 
- SVM = 0.10, APER - Random Forest = 0.13, and 
APER - Boosting = 0.12) or higher (APER - Tree =       
= 0.18, APER - Pruning = 0.17, and APER - Bagging = 
= 0.17) than those observed by the other methods 
under study. 

 
Table 3 - Apparent error rate (APER) obtained for 36 different scenarios by means of different techniques of 
classification. 

MD Scen. FLD QDA SVM 
ANN 

DT Prunning Bagg RanFor Boost 
1 layer 2 layers 

Normal 

1 0.39 0.07 0.16 0.15 0.12 0.26 0.25 0.16 0.14 0.37 

2 0.32 0.06 0.09 0.13 0.18 0.21 0.21 0.13 0.12 0.25 

3 0.14 0.03 0.04 0.08 0.31 0.12 0.11 0.07 0.06 0.10 

4 0.06 0.01 0.01 0.04 0.26 0.05 0.05 0.03 0.02 0.03 

5 0.39 0.15 0.21 0.22 0.11 0.38 0.37 0.26 0.25 0.40 

6 0.31 0.12 0.14 0.19 0.15 0.30 0.29 0.22 0.20 0.28 

7 0.15 0.06 0.05 0.11 0.26 0.16 0.15 0.11 0.10 0.13 

8 0.06 0.03 0.02 0.06 0.15 0.06 0.06 0.04 0.04 0.05 

9 0.41 0.42 0.35 0.35 0.05 0.47 0.44 0.43 0.42 0.39 

10 0.32 0.32 0.26 0.29 0.09 0.40 0.35 0.35 0.34 0.30 

11 0.16 0.16 0.13 0.16 0.13 0.20 0.18 0.18 0.17 0.14 

12 0.06 0.06 0.05 0.08 0.04 0.08 0.08 0.06 0.06 0.06 

13 0.34 0.33 0.26 0.29 0.03 0.39 0.38 0.36 0.34 0.32 

14 0.19 0.19 0.14 0.17 0.05 0.25 0.25 0.20 0.19 0.19 

15 0.03 0.03 0.03 0.04 0.07 0.10 0.11 0.06 0.04 0.04 

16 0.00 0.00 0.00 0.01 0.01 0.06 0.06 0.02 0.01 0.01 

Poisson 

17 0.40 0.21 0.16 0.20 0.19 0.29 0.29 0.22 0.21 0.35 

18 0.24 0.10 0.09 0.14 0.12 0.25 0.26 0.17 0.15 0.29 

19 0.15 0.04 0.04 0.08 0.06 0.15 0.15 0.10 0.08 0.15 

20 0.07 0.02 0.01 0.04 0.04 0.11 0.11 0.06 0.05 0.07 

21 0.41 0.36 0.21 0.32 0.29 0.37 0.37 0.36 0.33 0.36 

22 0.24 0.17 0.14 0.21 0.19 0.31 0.31 0.25 0.24 0.32 

23 0.14 0.09 0.05 0.13 0.15 0.20 0.20 0.15 0.13 0.21 

24 0.07 0.05 0.02 0.07 0.10 0.14 0.14 0.10 0.09 0.12 

25 0.44 0.38 0.35 0.34 0.32 0.39 0.38 0.41 0.40 0.38 

26 0.27 0.37 0.26 0.34 0.31 0.37 0.37 0.38 0.37 0.34 

27 0.15 0.23 0.13 0.21 0.20 0.26 0.25 0.28 0.27 0.24 

28 0.08 0.15 0.05 0.15 0.13 0.17 0.17 0.17 0.16 0.15 

29 0.36 0.32 0.26 0.27 0.24 0.33 0.32 0.32 0.31 0.30 

30 0.18 0.26 0.14 0.21 0.19 0.31 0.32 0.26 0.25 0.25 

31 0.05 0.10 0.03 0.09 0.07 0.16 0.17 0.11 0.10 0.10 

32 0.01 0.03 0.00 0.04 0.04 0.09 0.09 0.05 0.04 0.04 

MD = multivariated distribution; Scen = scenario; FLD = Fisher's linear discriminant function; QDA = Quadratic 
Discriminant Analysis; ANN = Artificial Neural Network; SVM = Support Vector Machine; DT = Decision Tree; Prunning – 
Pruned tree of decision; Bagg = Bagging; RanFor = Random Forest; Boost = Boosting. 

 
For the simulated scenarios considering multi-

variate Poisson distribution and heteroscedasticity of 

covariance matrices (Scenarios 17, 18, 19, 20, 21, 22, 

23 and 24), SVM presented a lower mean APER 

(0.09). Considering the results for the case of 

homoscedasticity of covariance matrices and multivari-

ate Poisson random vectors, FLD presented the same 

classificatory performance observed when data were 

simulated considering multivariate normal distribution 

(APER - FLD = 0.19). This equality of results corrobo-

rates with the literature, which shows that FLD deriva-

tion is based only on the assumption of homogeneity 

among covariance matrices, i.e., it does not require 

multivariate normality of the random vector (Ferreira, 



Científica, Jaboticabal, v.46, n.4, p.344-352, 2018                                                      ISSN: 1984-5529 

 

351 

 

2008). Again, SVM presented better results compared 

to the other methods (FLD, QDA, ANNs, Tree, Pruning, 

Bagging, Random Forest and Booting), with mean 

APER value equal to 0.15. The other methods (FLD, 

QDA, ANNs, Tree, Pruning, Bagging, Random Forest 

and Booting) presented mean APER values ranging 

from 0.19 (ANN) to 0.26 (Tree and Pruning). 

The results indicated that among the tech-

niques for classifying individuals, SVM showed better 

results in all situations evaluated. SVM presents the 

separation hyperplane between classes so as to max-

imize the margin defined as the distance between the 

classifier and the nearest sample (denoted by support 

vector). Thus, the method usually presents a good 

performance in test sets. Another interesting result is 

the good performance obtained by QDA in situations 

where the data presented heterogeneity of covariance 

matrices. This result is also supported by the literature, 

which states that such method is indicated in these 

cases (Ferreira, 2008). Another method that was high-

lighted is ANN. This method presented results close to 

those obtained by the best techniques in all scenarios 

evaluated. Finally, Decision Tree refinements (Bagging, 

Random Forest and Boosting) presented satisfactory 

performance (APER ranging from 0.12 to 0.25) and 

may be interesting alternatives in studies in which the 

assumptions are not met.  

Nevertheless, it should be emphasized that 

the choice of the method depends on several 

characteristics of the set of observations under study. 

In this work, we evaluated situations involving different 

distributions of multivariate probability and the pres-

ence or not of homoscedasticity of variances. Other 

characteristics should be considered when choosing 

the method, such as type of variables, presence of 

outliers, ability to deal with missing values, and ability 

to extract linear patterns from data. For all these situa-

tions, except for the ability to extract linear patterns 

from data, the literature indicates the use of Decision 

Tree and its refinements (Hastie et al., 2009). To 

extract nonlinear patterns, in turn, ANN and SVM are 

indicated (Hastie et al., 2009). 

Genetic diversity studies present data with 

different types of characters. In Vargas et al. (2015), for 

instance, the authors evaluated the genetic diversity of 

heirloom tomato accessions from the collection of the 

Department of Phytotechnology of the UFRRJ, through 

quantitative (e.g. fruit length and width) and qualitative 

descriptors (e.g. fruit shape and presence of pedicel 

knee). As regards data structuring, the literature usually 

does not present genetic diversity studies in which the 

authors are aware of the heteroscedasticity of covari-

ance matrices. Nogueira et al. (2008) and Santos et al. 

(2017a) are examples of that, since they did not 

consider this hypothesis. In view of the above results, 

assessing the assumption of homogeneity of covari-

ance matrices is important given the possible decrease 

in the performance of the applied technique. 

Conclusions 

 
For situations in which the data present 

heteroscedasticity of covariance matrices, the Support 
Vector Machine (SVM) and Quadratic Discriminant 
Analysis (QDA) presented better results regarding the 
Apparent Error Rate (APER). 

For situations in which the data show 
multivariate normality and homoscedasticity of covari-
ance matrices, the Support Vector Machine and Artifi-
cial Neural Networks presented better results regarding 
the Apparent Error Rate (APER). 

- For situations where the data showed multi-
variate Poisson distribution and homogeneity of covari-
ance matrices, the SVM, Fisher’s Discriminant Func-
tion and Artificial Neural Networks showed lower APER 
values. 

- Methods such as Decision Tree refinements 
(Bagging, Random Forest and Boosting) presented 
APER values lower than 0.25, being considered 
alternative techniques. 

 
References 

 

Bishop CM (2006) Pattern Recognition and Machine 

Learning (Information Science and Statistics). 

Springer. 738p. 

 

Bridges M, Heron EA, O'Dushlaine C, Segurado R, 

ISC, Morris D, Corvin A, Gill M, Pinto C (2011) Genetic 

classification of populations using supervised learning. 

PloS one 6(5):e14802. doi: 

10.1371/journal.pone.0014802 

 

Campbell C (2000) An introduction to kernel methods. 

In Howlett RJ, Jain LC (ed) Radial Basis Function Net-

works: Design and Applications, Springer Verlag. 

p.155–192. 

 

Ferreira DF (2008) Estatística multivariada. Editora 

UFLA. 662p. 

 

Fisher RA (1936) The use of multiple measurements in 

taxonomic problems. Annals of human genetics, 

7(2):179-188. doi:10.1111/j.1469-1809.1936.tb02137.x 

Freund Y, Schapire RE (1999) A short introduction to 

Boosting. Journal of Japanese Society for Artificial 

Intelligence 14(5):771-780. 

Fritsch S, Guenther F (2016) Neuralnet: Training of 
Neural Networks. R package version 1.33. Disponível 
em <https://CRAN.R-project.org/package=neuralnet> 
(Acesso em 26 dez 2017). 

Glória LS, Cruz CD, Vieira RAM, de Resende MDV, 
Lopes PS, de Siqueira OHD, Silva FF (2016) Access-
ing marker effects and heritability estimates from 
genome prediction by Bayesian regularized neural 
networks. Livestock Science 191:91-96. doi: 
10.1016/j.livsci.2016.07.015 



Científica, Jaboticabal, v.46, n.4, p.344-352, 2018                                                      ISSN: 1984-5529 

 

352 

 

Hastie T, Tibishirani R, Friedman J (2009) The Ele-
ments of Statistical Learning: Data Mining, Inference, 
and Prediction. Springer. 745p. 

Haykin S (1999) Neural Networks: A Comprehensive 
Foundation. Prentice Hall. 842p. 
Inan G, Demirtas H (2016) PoisBinOrd: Data Genera-
tion with Poisson, Binary and Ordinal Components, R 
package version 1.2. Disponível em <https://CRAN.R-
project.org/package=PoisBinOrd> (Acesso em 26 dez 
2017). 

James G, Witten D, Hastie T, Tibshirani R (2013) An 
introduction to Statistical Learning with Applications in 
R. Springer. 426p.  

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) 
kernlab - An S4  Package for Kernel Methods in R. 
Journal of Statistical Software 11(9):1-20. doi: 
10.18637/jss.v011.i09 

Lorena AC, de Carvalho AC (2007) Uma introdução às 
support vector machines. Revista de Informática 
Teórica e Aplicada 14(2):43-67. doi: 10.22456/2175-
2745.5690 

Mingoti SA (2007) Análise de dados através de méto-
dos de estatística multivariada: uma abordagem apli-
cada. Editora UFMG. 297p. 

Morrison DF (1976) Multivariate Statistical Methods. 
McGraw-Hill. 415 p. 

Nascimento M, Peternelli LA, Cruz CD, Nascimento 
ACC, Ferreira RDP, Bhering LL, Salgado CC (2013) 
Artificial neural networks for adaptability and stability 
evaluation in alfalfa genotypes. Crop Breeding and 
Applied Biotechnology 13(2):152-156. 

Nogueira APO, Sediyama T, Cruz CD, Reis MS, 
Pereira DG, Jangarelli M (2008) Novas características 
para diferenciação de cultivares de soja pela análise 
discriminante. Ciência Rural 38(9):2427-2433. doi: 
10.1590/S0103-84782008005000025 

R Core Team. R (2017) A language and environment 
for statistical computing. Vienna, Austria: R Foundation 
for Statistical Computing. 

Ripley B (2016) tree: Classification and Regression 
Trees. R package version 1.0-37. Disponível em:  
<https://CRAN.R-project.org/package=tree> (Acesso 
em 26 dez 2017). 

Rodrigues DL, Viana AP, Vieira HD, Santos EA, de 
Lima FH, Santos CL (2017) Contribuição de variáveis 
de produção e de semente para a divergência gené-
tica em maracujazeiro-azedo sob diferentes disponibi-
lidades de nutrientes. Pesquisa Agropecuária Brasi-
leira 52(8):607-614. doi: 10.1590/s0100-
204x2017000800006 

Sant’Anna IC, Tomaz RS, Silva GN, Nascimento M, 

Bhering LL, Cruz CD (2015) Superiority of artificial 

neural networks for a genetic classification procedure. 

Genetics and Molecular Research 14(3):9898-9906. 

doi: 10.4238/2015.August.19.24 

 

Santos BWC, Ferreira FM, de Souza VF, Clement CR, 

Rocha RB (2017a) Análise discriminante das 

características físicas e químicas de frutos de pupunha 

(Bactris gasipaes Kunth) do alto Rio Madeira, Rondô-

nia, Brasil. Científica 45(2):154-161. doi: 

10.15361/1984-5529.2017v45n2p154-161 

 

Santos MDS, Stancatte RS, Ferreira TC, Dorighello 

DV, Pazianotto RAA, de Melo IS, May A, Ramos, NP 

(2017b) Resistance to water deficit during the 

formation of sugarcane seedlings mediated by 

interaction with Bacillus sp. Científica 45(4):414-421. 

doi: 10.15361/1984-5529.2017v45n4p414-421 

 

Shanthini D, Shanthi M, Bhuvaneswari MC (2017) A 

Comparative Study of SVM Kernel Functions Based on 

Polynomial Coefficients and V-Transform Coefficients. 

International Journal of Engineering and Computer 

Science (IJECS) 6(3):20765-20769. 

doi:10.18535/ijecs/v6i3.65 

 

Silva GN, Nascimento M, Sant’anna IC, Cruz CD, 

Caixeta ET, Carneiro PC, Rosado R, Pestana K, 

Oliveira MS (2017) Artificial neural networks compared 

with Bayesian generalized linear regression for leaf 

rust resistance prediction in Arabica coffee. Pesquisa 

Agropecuária Brasileira 52(3):186-193. doi: 

10.1590/s0100-204x2017000300009 

 

Sokal RR, Rohlf FJ (1962) The comparison of dendro-

grams by objective methods. Taxon 11(2):33-40. doi: 

10.2307/1217208 

 

Vargas TO, Alves EP, Abboud ACS, Leal MAA, Carmo 

MGF (2015) Diversidade genética em acessos de 

tomateiro heirloom. Horticultura Brasileira 33(2):174-

180. doi: 10.1590/S0102-053620150000200007 

 

Venables WN, Ripley BD (2002) Modern Applied Sta-

tistics with S 4th Edition. Springer. 498p. 

 

Zhang MQ (2000) Discriminant analysis and its appli-

cation in DNA sequence motif recognition. Briefings in 

Bioinformatics 1(4):331-342. doi: 10.1093/bib/1.4.331 


